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Abstract. We consider the motion of an active Brownian particle with speed
fluctuations in d-dimensions in the presence of both translational and orienta-
tional diffusion. We use an Ornstein–Uhlenbeck process for active speed genera-
tion. Using a Laplace transform approach, we describe and use a Fokker–Planck
equation-based method to evaluate the exact time dependence of all relevant
dynamical moments. We present explicit calculations of several such moments
and compare our analytical predictions against numerical simulations to demon-
strate and analyze the dynamical crossovers, determined by the orientational
persistence of activity, speed fluctuation and relaxation. The kurtosis of dis-
placement shows positive and negative deviations from a Gaussian behavior
at intermediate times depending on the dominance of speed and orientational
fluctuations, respectively.
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1. Introduction

Active matter consists of self-propelled units, each of which can consume and dissipate
internal or ambient energy to maintain the system out of equilibrium and generate sys-
tematic motion [1–5]. The self-propulsion breaks the detailed balance condition and the
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equilibrium fluctuation–dissipation relation. Examples of self-propelled entities abound
in nature, ranging from motor proteins [6, 7], bacteria [8, 9] to macro-scale entities like
birds and animals [10]. Inspired by natural examples, several artificial active elements
have been fabricated. This includes colloidal microswimmers, active rollers, vibrated
rods, and asymmetric disks [2, 3]. Active colloids self-propel in their instantaneous head-
ing direction through auto-catalytic drive utilizing ambient chemical, optical, thermal,
or electric energy. They are typically modeled as active Brownian particles (ABPs) with
constant self-propulsion speed in a heading direction that undergoes orientational diffu-
sion. Their long-time dynamics are similar to the run-and-tumble particles (RTPs) [11]
and the active Ornstein–Uhlenbeck process [12, 13]. Despite enormous progress in the
knowledge of collective properties of active matter, the non-equilibrium nature of indi-
vidual particles are yet to be completely understood. Recent studies showed that even
non-interacting self-propelled particles can display rich and counterintuitive physical
properties [14–29]. The RTP particles show a late-time condensation [28]. In the absence
of thermal noise, exact short and long time properties of ABPs were obtained, and
anisotropies in their short time motion were pointed out [17, 19, 23]. Such anisotropies
survive even in the presence of thermal noise [21].

In a collection of ABPs with constant self-propulsion, collisions can lead to speed
fluctuations [30, 31] of each individual particle. In active polymers, the speeds of indi-
vidual bond segments and the center of mass undergo fluctuations due to bonding,
bending, and self-avoidance [21, 32–34]. Moreover, the generation of self-propulsion, be
it via auto-catalysis in active colloids or complex active processes in motile cells, involves
internal stochastic processes that render inherent fluctuations to active speed [4, 35–43].
The RTP model with generic speed distributions has been studied recently [28, 44–47].
Nevertheless, apart from few exceptions [4, 36, 48], in the most well studied ABP model,
the active speed is taken to be constant.

In this paper, we reconsider the Schienbein–Gruler mechanism for active speed gen-
eration [35, 36]. This involves an Ornstein–Uhlenbeck process leading to fluctuations
of active speed around a well-defined mean. The heading direction of self-propulsion
of the ABP undergoes orientational diffusion. In addition, a translational thermal
noise influences their displacement. We utilize and suitably extend a Fokker–Planck
equation-based approach [21, 49] to obtain arbitrary moments of the dynamics of speed-
fluctuating ABPs in general d-dimensions. We present explicit calculations of several of
such moments. The main achievements of this paper are the following: (i) we obtain a
general expression for the mean-squared displacement (MSD) in d-dimensions. In the
limit of fast relaxation of active speed, where the steady state expression for the active
speed autocorrelation function can be used, our result reduces to the previously obtained
expression for MSD [35, 48]. (ii) Our exact calculation and numerical simulations show
multiple diffusive-ballistic crossovers in the time-dependent scaling of MSD. These are
controlled by thermal fluctuations, directional persistence of activity, speed fluctuations
and relaxation. Moreover, we obtain exact expressions and crossovers in the displace-
ment fluctuation and its components and the fourth moment of the displacement vector.
The crossovers do not depend on the embedding dimensions but the crossover times do.
Remarkably, we find a sub-diffusive regime in the displacement fluctuations parallel to
the initial heading direction. It disappears in the absence of speed fluctuations. (iii) In

https://doi.org/10.1088/1742-5468/ac403f 3

https://doi.org/10.1088/1742-5468/ac403f


J.S
tat.

M
ech.

(2022)
013201

Active Brownian motion with speed fluctuations in arbitrary dimensions: exact calculation of moments and dynamical crossovers

the intermediate time scales, the kurtosis of the displacement vector measuring the devi-
ations from possible normal distributions changes between positive and negative values
before returning to the Gaussian behavior at long times. Such deviations are controlled
by the dominance of speed and orientational fluctuations, respectively.

The paper is organized as follows. In section 2, we describe the model. In section 3,
we present the Laplace transform method starting from the Fokker–Planck equation to
derive the general equation for calculating arbitrary moments of dynamical variables in
d-dimensions. In the following sections, we present calculations of particular quantities
of interest. We derive the expressions for mean speed and speed fluctuations, and the
autocorrelation functions of speed, orientation, and velocity in section 4. The deriva-
tions of position-orientation cross-correlation, MSD and displacement fluctuations are
shown in section 5. In section 6, we calculate the fourth moment of displacement and
the kurtosis to characterize the non-Gaussian nature of displacement fluctuations. The
kurtosis shows positive and negative maxima in time corresponding to relaxations of
speed and orientational fluctuations, respectively. Finally, in section 7, we conclude by
summarizing the main results and presenting an outlook.

2. Model

An ABP with fluctuating speed in d-dimension is described by its position
r = (r1, r2, . . . , rd) and active velocity v having a scalar speed v in the orientation
û = (u1, u2, . . . , ud), a d-dimensional unit vector that performs rotational diffusion on
a unit sphere. The active speed v is determined by an Ornstein–Uhlenbeck process. In
the presence of a translational Brownian noise the motion of the particle is described
within Ito convention [50–52] as,

dri = v(t)ui dt+ dBt
i(t), (1)

dv = −γv(v − v0)dt+ dBs(t), (2)

dui = (δij − uiuj)dB
r
j (t)− (d− 1)Drui dt. (3)

Equation (1) describes the evolution of particle position due to time dependent active
speed v(t) in orientation û(t). The stochastic variables v(t) and û(t) evolve indepen-
dently. The translational diffusion due to thermal noise is described by the Gaussian
process dB t with mean zero and variance

〈
dBt

i dB
t
j

〉
= 2Dδij dt. This passive fluctuation

is independent of the active heading direction. In contrast, active fluctuations depend
on the heading direction.

Equation (2) describes the active speed generation following an Ornstein–Uhlenbeck
process [35, 36], with mean speed relaxing to v0 in a time scale γ−1

v . The Gaussian
stochastic process dBs obeys 〈dBs(t)〉 = 0 and 〈dBs dBs〉 = 2Dv dt, with Dv governing
the speed fluctuations. This active fluctuation parallel to the heading direction deter-
mines the active speed. Note that such a process does not always ascertain a positive
speed. A large Dv leads to larger fluctuations and as a result larger excursions toward
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negative speeds with respect to the heading direction. Here, it is instructive to note
that such fluctuations of an effective negative speed can arise, e.g., in an assembly of
repulsively interacting ABPs [30, 31] due to increased frontal collisions at larger particle
density. In appendix A, we discuss the dependence of cumulative speed distribution on
the ratio Dv/γv for a given v0.

Equation (3) represents the active orientational diffusion of the heading direction [21,
27]. The Gaussian white noise dB r has zero mean and variance

〈
dBr

i dB
r
j

〉
= 2Drδij dt.

The first term on the right-hand side projects the noise dB r on the plane of a unit
sphere perpendicular to the heading direction û. The second term on the right-hand
side ensures the normalization û2 = 1 = (û+ dû)2 at all times.

We set τ r = 1/Dr as the unit of time, and �̄ =
√

D/Dr as the unit of length. All
the speeds and velocities are expressed in units of v̄ = �̄/τr =

√
DDr. The dimension-

less quantities controlling speed-fluctuation and speed-relaxation are D̃v = Dvτr/v̄
2 =

Dv/DD2
r and γ̃v = γv/Dr. The mean active speed is expressed as a dimensionless Peclet

number Pe = v0/v̄ = v0/
√
DDr. It is straightforward to perform a direct numerical

simulation of equations (1)–(3) using the Euler–Maruyama integration to generate
trajectories as illustrated in figure 1(a).

3. Calculation of moments from Fokker–Planck equation

In this section, we present a general framework for the calculation of arbitrary moments
of dynamical variables [21, 27]. The probability distribution P (r, v, û, t) of the position
r , the speed v(t) and the heading direction û of the particle follows the Fokker–Planck
equation

∂tP (r, v, û, t) = D∇2P +Dr∇2
uP +Dv∂

2
vP − v û · ∇P + γvP + γv(v − v0)∂vP (4)

where ∇ is the d-dimensional Laplacian operator, and ∇u is the Laplacian in the
(d− 1) dimensional orientation space. Note that the orientational Laplacian can be
expressed in terms of Cartesian coordinates y, defining ui = yi/y with y = |y|, as

∇2
u = y2

∑d
i=1∂

2
yi
− [y2∂2

y + (d− 1)y∂y]. In terms of the Laplace transform P̃ (r, v, û, s) =∫∞
0
dt e−st P (r, v, û, t), the Fokker–Planck equation takes the form,

−P (r, v, û, 0) + (s− γv)P̃ (r, v, û, s) = D∇2P̃ +Dr∇2
uP̃ +Dv∂

2
v P̃ − v û · ∇P̃

+ γv(v − v0)∂vP̃ .

Defining the mean of an observable 〈ψ〉s =
∫
dr dv dûψ(r, v, û)P̃ (r, v, û, s), multiplying

the above equation by ψ(r, v, û) and integrating over all possible (r, v, û) we obtain,

−〈ψ〉0 + s〈ψ〉s = D
〈
∇2ψ

〉
s
+Dr

〈
∇2

uψ
〉
s
+Dv

〈
∂2
vψ

〉
s
+ 〈v û · ∇ψ〉s − γv〈(v − v0)∂vψ〉s,

(5)

where the initial condition sets 〈ψ〉0 =
∫
dr dv dûψ(r, v, û)P (r, v, û, 0). Without any

loss of generality, we consider the initial condition P (r, v, û, 0) = δ(r)δ(v − v1)δ(û− û0),
where v1 is an initial speed that, in general, is different from v0. Equation (5) can be
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Figure 1. ABP in two-dimensions (2d) with D̃v = 1, and γ̃v = 1. (a) Typical ABP
trajectories over a duration t = 100τr for Pe = 20. The blue point with arrow in
each plot shows starting position and heading direction of the ABP. In these plots
we used the initial active speed v1 = v̄ Pe and heading direction û0 = x̂ along the x-
axis. (b) Scaled speed fluctuation

〈
δv2

〉
/v̄2 as a function of time t/τr for Pe = 1(◦),

20(�). The points are simulation results and the solid line is a plot of equation (10).
(c) Displacement in the initial heading direction

〈
r‖
〉
as a function of time t for

Pe = 1(◦), 20(�). The points denote simulation results, and line depict
〈
r‖
〉
= 〈r〉 ·

û0 using equation (18).

utilized to compute exact moments of any dynamical variable in d-dimensions as a
function of time.

4. Active velocity

In this section, we first calculate the average active speed and speed fluctuations. We
show how the speed fluctuations saturate over a long time. Next we calculate two-time
autocorrelation functions for the heading direction, active speed, and velocity.

4.1. Mean speed

To calculate the evolution of active speed, we use ψ = v and the initial condition
〈ψ〉0 = v1 in equation (5). Other terms required for the calculation are: 〈∇2ψ〉s =
0, 〈∇2

uψ〉s = 0, 〈∂2
vψ〉s = 0, 〈vû · ∇ψ〉s = 0, 〈(v − v0)∂vψ〉s = 〈v〉s − v0〈1〉s = 〈v〉s −

v0/s. In the last relation we used 〈1〉s =
∫
dr dû dvP̃ =

∫
dr dû dv

∫ ∞
0 dt e−stP =∫∞

0
dt e−st{dr dûdvP} =

∫∞
0
dt e−st = 1/s. Thus from equation (5), we get

〈v〉s =
v1

(s+ γv)
+

v0γv
s(s+ γv)

. (6)

The inverse Laplace transform of this relation gives

〈v〉 (t) = v1 e
−γvt + v0(1− e−γvt). (7)

At the long time limit of γvt 
 1 this gives the steady state value 〈v〉 = v0.

https://doi.org/10.1088/1742-5468/ac403f 6
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4.2. Speed fluctuations

To calculate speed fluctuations, we consider ψ = v2 and the initial condition 〈ψ〉0 = v21
in equation (5). The other terms involved in the calculation are: 〈∇2ψ〉s = 0, 〈∇2

uψ〉s =
0, 〈∂2

vψ〉s = 〈2〉s = 2/s, 〈vû · ∇ψ〉s = 0, 〈(v − v0)∂vψ〉s = 2〈v2〉s − 2v0〈v〉s. Thus, we get
from equation (5),

〈
v2
〉
s
=

1

(s+ 2γv)

[
v21 + 2γvv0〈v〉s +

2Dv

s

]
, (8)

where 〈v〉s is already calculated in equation (6). The inverse Laplace transform of
equation (8) gives

〈
v2
〉
(t) =

[
v1 e

−γvt + v0
(
1− e−γvt

)]2
+

Dv

γv

(
1− e−2γvt

)
. (9)

As a result, using equation (7), the speed fluctuation can be expressed as,

〈
δv2

〉
=

〈
v2
〉
− 〈v〉2 = Dv

γv

(
1− e−2γvt

)
. (10)

This relation can be directly derived integrating equation (2) as is shown in
equation (B.8) of appendix B. In the long time limit of γvt 
 1, the equation gives
the steady state fluctuations

δv2s =
〈
δv2

〉
t→∞ = Dv/γv.

A comparison of the prediction of equation (10) with simulation results is shown in
figure 1(b).

4.3. Correlation functions

The evolution of heading direction û is an independent stochastic process, and thus does
not get influenced by the speed fluctuations. Using equation (5) one can show

〈û〉s = û0/[s+ (d− 1)Dr] (11)

that leads to 〈û(t)〉 = û0 e
−(d−1)Drt [21]. It is then easy to see that the correlation function

〈û(t) · û(0)〉 = e−(d−1)Drt. (12)

The autocorrelation function of active speed can be directly calculated from equation (2)
as is shown in appendix B,

〈δv(t1)δv(t2)〉 =
Dv

γv

[
e−γv |t1−t2| − e−γv(t1+t2)

]
, (13)

where δv(t) = v(t)− 〈v(t)〉. Note that by setting t1 = t2 = t in this equation, one gets
the speed fluctuation derived in equation (10). In the steady state limit of t1, t2 →∞,
with a finite time gap τ = |t1 − t2| one gets the simplified expression

〈δv(τ)δv(0)〉 = (Dv/γv)e
−γvτ . (14)

https://doi.org/10.1088/1742-5468/ac403f 7
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Note that equations (7), (9), (10), (13) and (14) are well known results for Orn-
stein–Uhlenbeck process.

The velocity correlation can be calculated directly from the Langevin equations
writing 〈ṙ〉 = 〈vû〉 ≡ 〈v〉. This gives 〈v(t)〉 = 〈v(t)〉 〈û(t)〉 and 〈v(t1) · v(t2)〉 =
〈v(t1)v(t2)〉 〈û(t1) · û(t2)〉+ 2Dδ(t1 − t2). The Dirac-delta function in this last expression
arises from the thermal fluctuations described by the translational diffusion constant D
in equation (1). A direct calculation leads to

〈v(t1) · v(t2)〉 =
[
Dv

γv

(
e−γv(t1−t2) − e−γv(t1+t2)

)
+ 〈v(t1)〉 〈v(t2)〉

]
e−(d−1)Dr(t1−t2)

+ 2Dδ(t1 − t2). (15)

The decay of velocity correlation is dictated by two time constants, the speed correlation
time γ−1

v and the persistence time of the heading direction D−1
r . The autocorrelation

between fluctuations of velocity δv(t) = v(t)− 〈v(t)〉 is given by 〈δv(t1)δv(t2)〉. The
expression of 〈v(t)〉 in equation (7) simplifies in the steady state limit of t→∞ to
〈v(t)〉 = v0. Using t1, t2 →∞ and writing t1 − t2 = τ one gets

〈δv(τ)δv(0)〉 =
[
v20 +

Dv

γv
e−γvτ

]
e−(d−1)Drτ + 2Dδ(τ). (16)

A full probability distribution of the velocity vector p(v) = p(vx, vy) and marginal proba-
bility distributions p(vx) and p(vy), along with the probability distribution of the active
speed p(v) are obtained from direct numerical simulations. The results are shown in
appendix figure C1.

5. Displacement

In this section, we compute various moments of the displacement vector using
equation (5). We begin by setting ψ = r , and initial location 〈ψ〉0 = 0 at the ori-
gin. The calculation uses 〈∇2ψ〉s = 0, 〈∇2

uψ〉s = 0, 〈∂2
vψ〉s = 0, 〈v û · ∇ψ〉s = 〈vû〉s,

and 〈(v − v0)∂vψ〉s = 0 in equation (5). This gives 〈r〉s = 〈vû〉s/s. Again, the same
equation (5) gives

〈vû〉s =
1

s+ γv + (d− 1)Dr
[v1û0 + γvv0〈û〉s]

and 〈û〉s shown in equation (11). Therefore, we get

〈r〉s =
(v1 − v0)û0

s(s+ (d− 1)Dr + γv)
+

v0 û0

s(s+ (d− 1)Dr)
. (17)

Performing the inverse Laplace transform this leads to the evolution of the displacement
vector

〈r〉 (t) = (v1 − v0)û0

(d− 1)Dr + γv

(
1− e−( (d−1)Dr+γv ) t

)
+

v0 û0

(d− 1)Dr

(
1− e−(d−1)Drt

)
. (18)
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In figure 1(c), we show a comparison of this estimate of displacement in the direc-
tion of the initial heading direction

〈
r‖
〉
= 〈r〉 · û0 as obtained from equation (18) with

numerical simulations.

5.1. Position-orientation cross-correlation

Calculation of higher moments of displacement vector involves the equal time position-
orientation cross-correlation 〈û · r〉 (t). We set ψ = û · r and the initial condition
〈ψ〉0 = 0 in equation (5). The calculation uses the relations: 〈∇2ψ〉s = 0, 〈∇2

uψ〉s =
−(d− 1)Dr〈û · r〉s, 〈∂2

vψ〉s = 0, 〈v û · ∇ψ〉s = 〈v〉s, and 〈(v − v0)∂vψ〉s = 0. As a result,
one gets 〈û · r〉s = 〈v〉s/(s+ (d− 1)Dr) with 〈v〉s given in equation (6). These results
lead to

〈û · r〉s =
v1 − v0

(s+ γv)(s+ (d− 1)Dr)
+

v0
s(s+ (d− 1)Dr)

. (19)

The inverse Laplace transform of equation (19) gives

〈û · r〉 (t) = v1 − v0
(d− 1)Dr − γv

(
e−γvt − e−(d−1)Drt

)
+

v0
(d− 1)Dr

(
1− e−(d−1)Drt

)
. (20)

It is interesting to note that for initial active speed v1 = v0, the cross-correlation reduces
to 〈û · r〉 (t) = v0

(
1− e−(d−1)Drt

)
/(d− 1)Dr, an expression that is the same as ABPs in

the absence of active speed fluctuations as described in [21].

5.2. Mean squared displacement

Here we present an exact computation of the MSD 〈r 2〉. We use ψ = r 2 and the initial
condition 〈r 2〉0 = 0 in equation (5). The calculation of the moment uses the relations
〈∇2

ur
2〉s = 0, 〈∇2r 2〉s = 2d/s and 〈v û · ∇r 2〉s = 2〈v û · r〉s. Thus, equation (5) leads to

〈
r 2
〉
s
=

1

s

[
2dD

s
+ 2〈v û · r〉s

]
. (21)

To complete the calculation, one needs to evaluate 〈v û · r〉s, again, using the same
equation (5). One may proceed like before, using ψ = v û · r and 〈ψ〉0 = 0, 〈∇2ψ〉s = 0,
〈∇2

u(v û · r)〉s = −(d− 1)〈vû · r〉s, 〈vû · ∇(v û · r)〉s = 〈v2û2〉s = 〈v2〉s to obtain

〈v û · r〉s =
1

(s+ (d− 1)Dr + γv)

[〈
v2
〉
s
+ γvv0〈û · r〉s

]
,

where 〈v2〉s and 〈û · r〉s are already calculated in equations (8) and (19) respectively.
Thus, plugging these relations back in the expression of 〈r 2〉s in equation (21), we obtain
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〈
r 2
〉
s
=

2dD

s2
+

4Dv

s2(s+ 2γv)(s+ (d− 1)Dr + γv)

+
2γvv0

s(s+ (d− 1)Dr)(s+ γv)(s+ (d− 1)Dr + γv)

(
v1 +

γvv0
s

)

+
2

s(s+ (d− 1)Dr + γv)(s+ 2γv)

[
v21 +

2γvv0
(s+ γv)

(
v1 +

γvv0
s

)]
. (22)

Performing the inverse Laplace transform, this leads to

〈
r2
〉
=

(
Dv − γv(v0 − v1)

2
)
e−2γvt

γ2
v ((d− 1)Dr − γv)

+
2(2(d− 1)Dr − γv)v0(v0 − v1)e

−γvt

(d− 1)Drγv((d− 1)Dr − γv)

+
2
(
−γ2

vv
2
0 + (d− 1)Drγvv0v1

)
e−(d−1)Drt

(d− 1)2D2
r((d− 1)Dr − γv)γv

+
2
(
(d− 1)2dDD2

rγv + γ2
vv

2
0 + (d− 1)Dr

(
Dv + γv

(
dDγv + v20

)))
t

(d− 1)Drγv((d − 1)Dr + γv)

+
2(d− 1)Drγ

3
vv0(−3v0 + v1)− 2γ4

vv
2
0

(d− 1)2D2
rγ

2
v ((d− 1)Dr + γv)2

− (d− 1)3D3
r(Dv + γv(v0 − v1)(3v0 + v1)) + (d− 1)2D2

rγv
(
3Dv + γv

(
7v20 − 4v0v1 − v21

))
(d− 1)2D2

rγ
2
v((d − 1)Dr + γv)2

− 2 ((d− 1)Drγv(2Dv − γv(v0 − v1)(v0 − v1))) e
−((d−1)Dr+γv)t

(d− 1)Dr((d− 1)Dr − γv)γv((d− 1)Dr + γv)2

− 2
(
(d− 1)2D2

rγv(v0 − v1)v1 + γ3
vv0(−v0 + v1)

)
e−((d−1)Dr+γv)t

(d− 1)Dr((d− 1)Dr − γv)γv((d− 1)Dr + γv)2
. (23)

The derivation of 〈r 2〉 in d-dimensions shown in equation (23) is our first main result.
Considering the initial active speed v1 = v0, equation (23) simplifies to

〈
r 2
〉
= 2dDt+

2v20
(d− 1)Dr

(
t− 1− e−(d−1)Drt

(d− 1)Dr

)

+
2Dv

γv(γv + (d− 1)Dr)

(
t− 1− e−(γv+(d−1)Dr)t

γv + (d− 1)Dr

)

− 2Dv

γv(γv + (d− 1)Dr)

[
1− e−2γvt

2γv
− e−2γvt − e−(γv+(d−1)Dr)t

γv − (d− 1)Dr

]
. (24)

Note that for the special case of (d− 1)Dr = γv, equation (24) can be further simplified
by using the L’Hôpital’s rule, or, directly substituting (d− 1)Dr = γv and v1 = v0 in
equation (22) to calculate 〈r 2〉.

In the limits of Dv → 0 and γv →∞, equation (24) reduces to that of free ABPs in
the absence of speed fluctuations, as shown in [21]. The structure of the second and third
terms in equation (24) can describe two ballistic diffusive crossovers [48]. As we show in
the following, the presence of the fourth term allows for further crossovers. Moreover,
the presence of translational diffusion makes the short time dynamics diffusive. Here, it
is instructive to note that the calculations of lower moments can be performed directly
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using the Langevin equations. For example, the formal solution for the position vector,

r(t) =

∫ t

0

dt′v(t′)û(t′) +

∫ t

0

dBt(t′)

leads to the second moment

〈
r 2
〉
=

∫ t

0

dt1

∫ t

0

dt2 〈v(t1)v(t2)〉 〈û(t1) · û(t2)〉+
∫ t

0

∫ t

0

〈
dBt(t1) · dBt(t2)

〉
, (25)

where the cross terms do not appear as they describe independent stochastic processes
with

〈
dBt

〉
= 0. By substituting the speed correlation function from equation (13)

and the orientational correlation function from equation (12) in equation (25), and
performing the integrations, one gets the same expression for MSD as in equation (24).

In figure 2, we compare our analytic prediction for the second moment of displace-
ment shown in equation (24) with direct numerical simulation results in 2d (d = 2) to
find excellent agreement between them. Here, it is instructive to note the difference
between our general d-dimensional expression for 〈r 2〉 obtained in equation (24) from
the earlier results for 2d [35, 48]. The difference stems from an assumption of time-scale
separation used in these earlier publications, where the speed fluctuations were assumed
to be in the steady state. This can be easily seen by noting that instead of using the
general result for 〈v(t1)v(t2)〉 of equation (13), if one uses the steady state limit of the
correlation for active speed as in equation (14), the expression in equation (25) leads to
the previously obtained relation in d = 2 [35, 48]

〈
r 2
〉
= 4D t+ 2v20

(
t

Dr
− 1− e−Drt

D2
r

)
+

2Dv

γv

(
t

(γv +Dr)
− 1− e−(γv+Dr)t

(γv +Dr)2

)
. (26)

As is clearly shown in figure 2, while our calculation in equation (24) exactly captures
the behavior observed in numerical simulations, the earlier result shown in equation (26)
and plotted by dashed lines in figure 2 deviates from the numerically obtained 〈r 2〉 (t).
In figure 2, the qualitative difference can be seen clearly at small γv/Dr and large Pe.
Thus, our exact calculation of 〈r 2〉 (t) in d-dimensions, as shown in equation (23) and
figure 2, is the first main result of this paper. The MSD shows multiple ballistic-diffusive
crossovers, which we elucidate in detail in the following.

Multiple crossovers and crossover timescales: to elucidate the crossovers per-
mitted by equation (24), we focus on its behavior in different time regimes. First, we
note that in the two limits of the shortest and longest times 〈r 2〉 shows diffusive behav-
ior, albeit with two significantly different diffusion constants. In the short time limit

〈
r 2
〉
t→0

≈ 2dD t (27)

and in the long time limit〈
r 2
〉
t→∞ ≈ 2dDefft, (28)

with the effective diffusion constant

Deff =

[
D +

v20
d(d− 1)Dr

+
Dv

dγv[γv + (d− 1)Dr]

]
. (29)
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Figure 2. Time dependence of
〈
r2
〉
/t in 2d. The slow and fast relaxations of active

speed are considered in (a) and (b) γ̃v � 1, and (c) and (d) γ̃v 
 1, respectively.
The points denote simulation results, the solid lines depict equation (24) with d = 2,
and the dashed lines depict equation (26). Parameter values used in (a) and (b):
γ̃v = 5× 10−4, D̃v = 2.5 with Pe = 22.36 (a) and 1.12 (b). Parameter values used
in (c) and (d): γ̃v = 5× 102, D̃v = 107 with Pe = 20 (c) and 1 (d). Initial conditions
are chosen such as the active speed v1/v̄ = Pe and the heading direction û0 = x̂ is
along the x-axis.

The effective diffusion in the long time limit is modified by the mean active speed v0
and the speed fluctuation 〈δv2〉 = Dv/γv, see equation (14).

For the smallest time scales, we expand 〈r2〉 in equation (24) around t = 0 to obtain

〈
r 2
〉
= 2dDt+ v20t

2 − 1

3

(
(d− 1)Drv

2
0 − 2Dv

)
t3 +O(t4). (30)

This shows a crossover from diffusive 〈r 2〉 ∼ t to ballistic behavior 〈r 2〉 ∼ t2 at
tI = 2dD/v20, with the crossover point obtained by comparing the first and second terms
of the above expansion. Clearly, the crossover itself does not depend on d, but the
crossover time tI is d-dependent. Comparing the second and third terms in the above
expansion, one can identify a possible second crossover from ballistic to diffusive behav-
ior at tII = 3v20/[(d− 1)Drv

2
0 − 2Dv], provided (d− 1)Drv

2
0 > 2Dv. Such crossovers have

already been observed for d = 2 in figure 2. Further insights can be drawn by separately
considering the limits of (i) slow speed relaxation and (ii) slow orientational relaxation,
separately.

(i) Slow relaxation of active speed; γv� (d − 1)Dr : using (d− 1)Drt 
 1 and
2γvt � 1, we can write exp[−(d− 1)Drt] ≈ 0, exp[−((d− 1)Dr + γv)t] ≈ 0 and expand
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Figure 3. Persistent motion. MSD
〈
r2
〉
as in equation (24) as a function of time

t in two dimension, d = 2. (a) Parameters used are γ̃v = 5× 10−4, D̃v = 2.5 with
Pe = 22.36 (solid line), 1.12 (dashed line). The solid line shows four crossovers with
crossover times tI/τr = 0.008, tII/τr = 3.03, tIII/τr = 202.8 and tIV/τr = 2200. The
dashed line shows two crossovers: a diffusive-ballistic crossover at t∗I/τr = 0.8 and a
ballistic-diffusive crossover at tIV/τr = 2000. (b) Parameters used are γ̃v = 2× 103,
D̃v = 1011, with Pe = 2× 103 (solid line), 10 (dashed line). The solid line shows five
crossovers with crossover times tI/τr = 10−6, tII/τr = 6× 10−5, t′III/τr = 8.6× 10−4

and t′IV/τr = 1.25× 10−2, and tV = 2.02. The dashed line shows two crossovers with
crossover times t∗II/τr = 7.75× 10−6 and t′III/τr = 8.6× 10−4. Initial activity: speed
v1/v̄ = Pe and heading direction along x-axis, û0 = x̂.

exp(−2γvt) around 2γvt = 0 in equation (24) to get

〈
r 2
〉
=

(
2dD +

2v20
(d− 1)Dr

+
4Dv

(d− 1)2D2
r − γ2

v

)
t+

2Dv

(d− 1)Dr − γv
t2 +O(t3). (31)

This implies a possible third crossover 〈r 2〉 ∼ t to ∼t2 expected at tIII = [2dD + 2v20/(d−
1)Dr + 4Dv/((d− 1)2D2

r − γ2
v)] [(d− 1)Dr − γv]/2Dv, a crossover time that depends on

d. The final crossover point to the long-time diffusive limit denoted by equation (28)
can be calculated by comparing the last term in equation (31) with equation (28). This
crossover time turns out to be tIV = 2dDeff [(d− 1)Dr − γv)]/2Dv.

Moreover, at small Pe, the diffusive-ballistic crossover at tI can be preempted by a
different ballistic-diffusive crossover at t∗I that can be determined by comparing the first
term in equation (30) with the second term in equation (31). This gives t∗I = dD[(d−
1)Dr − γv]/Dv, a crossover point independent of the active speed v0.

Such crossovers for 〈r 2〉 in 2d, in the limit of γvτ r � 1, are illustrated in
figure 3(a). The graphs depict the expression in equation (24) using parameter
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values γ̃v = γvτr = 5× 10−4, D̃v = Dvτr/v̄
2 = 2.5. The solid line at larger

Pe(=22.36) shows all four diffusive- ballistic- diffusive crossovers discussed
above, as the requirement tI < tII < tIII < tIV is satisfied. In this case, the
crossover times are tI/τr ∼ 4/Pe2 ≈ 0.008, tII/τr = 3Pe2/(Pe2 − 2D̃v) ≈ 3.03,

tIII/τr = [4 + 2Pe2 + 4D̃v/(1− γ̃v
2)](1− γ̃v)/2D̃v ≈ 202.8, and tIV/τr = [4 + 2Pe2 +

2D̃v/{γ̃v(1 + γ̃v)}] (1− γ̃v)/2D̃v ≈ 2200, as pointed out in figure 3(a).
For Pe = v0/v̄ = 1.12, 〈r 2〉 denoted by the dashed line in figure 3(a) shows only

two crossovers: (i) a diffusive-ballistic crossover at t∗I/τr = 2(1− γ̃v)/D̃v = 0.8 and
(ii) a ballistic-diffusive crossover at tIV/τr ≈ 2000. In this case t∗I < tI = 3.2τr, thus
the first diffusive-ballistic crossover is preempted by t∗I . Other possible intermedi-
ate crossovers disappear due to the following reasons. The possible ballistic-diffusive
crossover point tII < 0 for these parameters. In its absence, the point tIII ≈ 3.3τ r sig-
nifying a possible diffusive-ballistic crossover cannot show any change in the already
ballistic property of the ABP in that time regime.

(ii) Fast relaxation of active speed; γv� (d − 1)Dr : the scenario of short-time
diffusive-ballistic crossover at tI = 2dD/v20 remains unchanged. As indicated before, at
tII = 3v20/(2Dv − (d− 1)Drv

2
0) with 2Dv > (d− 1)Drv

2
0, a possible second crossover from

〈r 2〉 ∼ t2 to 〈r 2〉 ∼ t3 can appear. In the limit of (d− 1)Drt � 1 and 2γvt 
 1, we can
use exp(−2γvt) ≈ 0, exp[−((d− 1)Dr + γv)t] ≈ 0 and expand exp[−(d− 1)Drt] around
Drt = 0 in equation (24) to get

〈
r 2
〉
=

(
2dD +

2Dv

γv((d− 1)Dr + γv)

)
t+ v20t

2 +O(t3). (32)

Comparing the third term in equation (30) and the first term in equation (32),
we estimate the crossover time from 〈r 2〉 ∼ t3 to 〈r 2〉 ∼ t to be at t′III =[
32dD+2Dv/{γv((d−1)Dr+γv)}

2Dv−(d−1)Drv20

]1/2
. Equation (32) suggests a fourth crossover from 〈r 2〉 ∼ t

to 〈r 2〉 ∼ t2 at t′IV = (2dD + 2Dv/(γv((d− 1)Dr + γv))/v
2
0. The final ballistic-diffusive

crossover with (d− 1)Dr � 2γv can be obtained by comparing the second term in
equation (32) with equation (28). This gives the final crossover time tV = 2dDeff/v

2
0.

There is also a possibility of getting a direct crossover from 〈r 2〉 ∼ t to 〈r 2〉 ∼ t3

at t∗II = [6dD/(2Dv − (d− 1)Drv
2
0)]

1/2
if t∗II < tI and provided t∗II > 0. The crossover

point t∗II is obtained by comparing the first and the third term of equation (30).
Another direct final crossover from 〈r 2〉 ∼ t3 to 〈r 2〉 ∼ t can appear at tVI =
[6dDeff/(2Dv − (d− 1)Drv

2
0 )]

1/2 if tVI < t′III, otherwise the final crossover will be at t′III.
The estimate of tVI is obtained by comparing the third term in equation (30) with
equation (28).

Such crossovers for 〈r 2〉 in 2d in the limit of γvτ r 
 1 are illustrated in
figure 3(b). The graphs depict the expression in equation (24) using parameter

values γ̃v = γvτr = 2× 103, D̃v = Dvτr/v̄
2 = 1011. The solid line at Pe = v0/v̄ = 2× 103

exhibits all five possible crossovers from 〈r 2〉 ∼ t to ∼t2, to ∼t3, to ∼t, to ∼t2

to finally ∼t as the requirement tI < tII < t′III < t′IV < tV is satisfied. The crossover

times are tI/τr ∼ 4/Pe2 = 1× 10−6, tII/τr ∼ 3Pe2/(Pe2 − 2D̃v) ≈ 6× 10−5, t′III/τr =[
3
(
4 + 2D̃v/{γ̃v(1 + γ̃v)}

)
/(2D̃v − Pe2)

]1/2
≈ 8.6× 10−4, t′IV/τr = [4 + 2D̃v/{γ̃v(1 +
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Table 1.
〈
r2
〉

scalings characterizing dominant mechanisms in different time
regimes. The table summarizes the analysis using equations (30)–(32). The steady
state speed fluctuation δv2s = Dv/γv.

Direction of increasing time t→〈
r2
〉

∼t ∼t2 ∼t ∼t2 ∼t

γ̃v � (d− 1) D v20 2dD + 2v20
(d−1)Dr

+ 4δv2s
Dr

γ̃v

[(d−1)2−γ̃v2]
2δv2s γ̃v

[(d−1)−γ̃v ]
2dD + 2v20

(d−1)Dr
+ 2δv2s

Dr

1
(d−1)+γ̃v

γ̃v 
 (d− 1) D v20 2dD + 2δv2s
Dr

1
(1+γ̃v)

v20 2dD + 2v20
(d−1)Dr

+ 2δv2s
Dr

1
(d−1)+γ̃v

γ̃v)}]/Pe2 ≈ 1× 10−2, tV/τr = [4 + 2Pe2 + 2D̃v/{γ̃v(1 + γ̃v)}]/Pe2 ≈ 2. They are
identified by arrows on the solid line in figure 3(b).

For Pe = v0/v̄ = 10, 〈r 2〉 denoted by the dashed line in figure 3(b) shows only
two crossovers: the first from 〈r 2〉 ∼ t to 〈r 2〉 ∼ t3 at t∗II, and the second going

back to 〈r 2〉 ∼ t at tVI. Here, t∗II/τr = [12/(2D̃v − Pe2) ]1/2 ≈ 7.75× 10−6 as t∗II < tI ≈
0.04 τr. The 〈r 2〉 ∼ t3 to 〈r 2〉 ∼ t crossover appears at t′III/τr ≈ 8.6× 10−4, as tVI/τr =[
12× 1+Pe2

2 + D̃v
γ̃v (1+γ̃v )

2D̃v−Pe2

]1/2
= 10−3 > t′III. It is clear from the expansions that the appearance

of different scaling regimes and dynamical crossovers between them are independent
of the embedding dimension. However, as the explicit calculations show, the crossover
times do depend on d. We summarize the dominance of different kinds of fluctuations
in different time regimes in table 1.

From the above analysis it is clear that an estimate for the duration of crossovers can
also be obtained by comparing the two scaling functions before and after crossover, as
the two regimes are expected to be dominated by these two scalings. For example, in the
first diffusive-ballistic crossover described by equation (30) the beginning of the crossover
may be estimated to be 2dDt ≈ 10× v20t

2 with the diffusive scaling being one order of
magnitude larger than the ballistic scaling. This will give the crossover beginning time
tc1 = dD/5v20. In similar spirit, the crossover will complete at v20t

2 ≈ 10× 2dDt giving
the end time tc2 = 20 dD/v20. Thus the duration of the first diffusive-ballistic crossover
will have a parameter dependence tc2 − tc1 ∼ dD/v20 which is proportional to tI, the
crossover point. The duration of a crossover is proportional to the crossover time itself.

5.3. Displacement fluctuations

In this section, we compute the displacement fluctuation 〈δr 2〉 and analyze the multiple
crossovers that it shows identifying the crossover times. The displacement fluctua-
tion is defined as 〈δr 2〉 = 〈r 2〉 − 〈r〉2 where 〈r 2〉 and 〈r〉 were already calculated in
equations (24) and (18). Thus, in d-dimensions with initial speed v1 = v0,

〈
δr 2

〉
= 2d

(
D +

v20
(d− 1)dDr

)
t− v20

(d− 1)2D2
r

(
3− 4 e−(d−1)Drt + e−2(d−1)Drt

)

+
2Dv

γv(γv + (d− 1)Dr)

[
t− 1− e−(γv+(d−1)Dr)t

(γv + (d− 1)Dr)
− 1− e−2γvt

2γv
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+
e−2γvt − e−(γv+(d−1)Dr)t

((d− 1)Dr − γv)

]
. (33)

In the small time limit of Drt � 1, γvt � 1, expanding 〈δr2〉 in equation (33) around
t = 0 leads to,

〈
δr 2

〉
= 2dDt+

2

3
(Dv + (d− 1)Drv

2
0)t

3

− 1

6

[
(d− 1)DrDv + 3Dvγv + 3(d− 1)2D2

rv
2
0

]
t4 +O(t5). (34)

The first two terms in the expansion shows a possible crossover from 〈δr 2〉 ∼ t to ∼t3

at tI = [3dD/(Dv + (d− 1)Drv
2
0)]

1/2. Moreover, a second crossover from 〈δr 2〉 ∼ t3 to
∼t can appear at tII = 4(Dv + (d− 1)Drv

2
0)/((d− 1)DrDv + 3Dvγv + 3v20(d− 1)2D2

r). In
the long time limit of t→∞, i.e. Drt 
 1, γvt 
 1, 〈δr 2〉 in equation (33) leads to a
diffusive behavior

〈
δr 2

〉
=

(
2dD +

2v20
(d− 1)Dr

+
2Dv

γv(γv + (d− 1)Dr)

)
t. (35)

(i) Slow relaxation of active speed; γv� (d − 1)Dr : in the limit of (d− 1)Drt 
 1
and 2γvt � 1, 〈δr2〉 in equation (33) leads to

〈
δr 2

〉
=

(
2dD +

2v20
(d− 1)Dr

+
4Dv

((d− 1)2D2
r − γ2

v)

)
t+

2Dv

((d− 1)Dr − γv)
t2 +O(t3). (36)

This allows a third crossover from 〈δr 2〉 ∼ t to 〈δr 2〉 ∼ t2 at tIII ∼ (2dD + 2v20/(d−
1)Dr + 4Dv/((d− 1)2D2

r − γ2
v))((d− 1)Dr − γv)/2Dv. Finally, a crossover from 〈δr 2〉 ∼

t2 to ∼t can appear at tIV ∼ [2dD + 2v20/(d− 1)Dr + 2Dv/{γv(γv + (d− 1)Dr)}]((d−
1)Dr − γv)/2Dv.

In the case of tII < tI, the number of possible crossovers reduces to two: from
〈δr 2〉 ∼ t to ∼t2 to ∼t. Following a procedure similar to the analysis of crossovers in
〈r 2〉, we find that the first crossover from 〈δr 2〉 ∼ t to ∼t2 appears at t∗I ∼ 2dD((d−
1)Dr − γv)/2Dv, obtained by comparing the first term in equation (34) and the sec-
ond term in equation (36). The second crossover 〈δr 2〉 ∼ t2 to ∼t appears at tIV ∼
[2dD + 2v20/(d− 1)Dr + 2Dv/{γv(γv + (d− 1)Dr)}]((d− 1)Dr − γv)/2Dv, obtained by
comparing the second terms in equations (36) and (35).

In figure 4(a), we show two examples of crossovers in 〈δr 2〉 observed in 2d in
the limit of γvτ r � 1. We identify the crossover times in the figure. The figure
is for parameter values γ̃v = γvτr = 5× 10−4, D̃v = Dvτr/v̄

2 = 2.5. The solid line,
Pe = v0/v̄ = 22.36 in figure 4(a) exhibits all the four crossovers 〈δr 2〉 ∼ t to ∼t3, to
∼t, to ∼t2, to finally ∼t as the requirement tI < tII < tIII < tIV is satisfied. The crossover
times are tI/τr ∼ [6/(Pe2 + D̃v)]

1/2 ≈ 0.11, tII/τr ∼ 4(Pe2 + D̃v)/(3Pe
2 + 3D̃vγ̃v + D̃v) ≈

1.34, tIII/τr ∼ [4 + 2Pe2 + 4D̃v/(1− γ̃v
2)](1− γ̃v)/2D̃v ≈ 202.8 and tIV/τr ∼ [4 + 2Pe2 +

2D̃v/{γ̃v(1 + γ̃v)}](1− γ̃v)/2D̃v ≈ 2200. The dashed line for Pe = v0/v̄ = 1.12 in
figure 4(a) shows two crossovers 〈δr 2〉 ∼ t to ∼t2 to ∼t as tII < tI. The crossover times

are t∗I/τr ∼ 2(1− γ̃v)/D̃v ≈ 0.8 and tIV/τr ≈ 2× 103. Here, the first diffusive- ballistic
crossover appears at t∗I as t∗I < tI ≈ 1.3 τr.
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Figure 4. Displacement fluctuations
〈
δr2

〉
in equation (33) as a function of time

t using d = 2. (a) Parameters used are γ̃v = 5× 10−4, D̃v = 2.5 with active speed
Pe = 22.36 (solid line), 1.12 (dashed line). The solid line shows four crossovers with
crossover times tI/τr = 0.008, tII/τr = 3.03, tIII/τr = 202.8 and tIV/τr = 2.2× 103.
The dashed line shows two crossovers with crossover times t∗I/τr = 0.8 and tIV/τr =
2× 103. (b) Parameters used are γ̃v = 2× 103, D̃v = 1011 with Pe = 2× 103 (solid
line), 10 (dashed line). The solid line exhibits four crossovers with crossover
times tI/τr = 8× 10−6, tII/τr = 7× 10−4, t′III/τr = 1.4× 10−1 and t′IV/τr = 1.7. The
dashed line shows two crossovers with crossover times tI/τr = 8× 10−6, tII/τr =
7× 10−4.

(ii) Fast relaxation of active speed; γv� (d − 1)Dr : in the other limit of
(d− 1)Drt � 1 and 2γvt 
 1, using exp(−2γvt) = 0, exp[−((d− 1)Dr + γv)t] = 0 and
expanding exp(−Drt) around Drt = 0, equation (33) leads to

〈
δr 2

〉
�

(
2dD +

2Dv

γv((d− 1)Dr + γv)

)
t+

2

3
(d− 1)Drv

2
0t

3. (37)

This predicts a third possible crossover from 〈δr 2〉 ∼ t to ∼t3 at t′III ∼
[3(dD +Dv/{γv((d− 1)Dr + γv)})/(d− 1)Drv

2
0]

1/2
. The final crossover 〈δr 2〉 ∼ t3 to ∼t

can appear at t′IV ∼ [3(dD + v20/(d− 1)Dr +Dv/{γv((d− 1)Dr + γv)})/(d− 1)Drv
2
0]

1/2
,

with the crossover point obtained by comparing the second term in equation (37) with
equation (35). If t′IV � t′III these last two crossovers will not be possible.

We demonstrate such crossovers in 2d, in the limit of γvτ r 
 1, in figure 4(b).

The parameter values used are γ̃v = γvτr = 2× 103, D̃v = Dvτr/v̄
2 = 1011. The

solid line in figure 4(b) depicts the behavior at Pe = v0/v̄ = 2× 103. This
exhibits all four crossovers from 〈r 2〉 ∼ t to 〈r 2〉 ∼ t3 to 〈r 2〉 ∼ t to 〈r 2〉 ∼
t3 to finally 〈r 2〉 ∼ t as the requirement tI < tII < tIII < tIV is satisfied. In this
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Figure 5. Components of displacement fluctuation: (a), (c) 〈δr2‖〉 and (b), (d)
〈
δr2⊥

〉
as a function of time t in 2d. (a), (b) γ̃v = 5× 10−4, D̃v = 2.5 with Pe = 22.36 (solid
line), 1.12 (dashed line). (c), (d) γ̃v = 2× 103, D̃v = 1011 with Pe = 2× 103 (solid
line), 10 (dashed line). The inset in (c) displaying a zoomed in view of the shaded
region in the main figure shows a sub-diffusive behavior in the parallel component
of displacement fluctuation over an intermediate time regime.

case, the crossover points tI/τr ∼
[
6/(D̃v + Pe2)

]1/2
≈ 8× 10−6, tII/τr ∼ 4(D̃v + Pe2)/[

D̃v + 3D̃vγ̃v + 3Pe2
]
≈ 7× 10−4, t′III/τr ∼

[
3[2 + D̃v/{γ̃v(1+γ̃v)}]/Pe2

]1/2
≈ 1.4× 10−1,

and t′IV/τr ∼
[
3(2 + Pe2 + D̃v/{γ̃v(1 + γ̃v)})/Pe2

]1/2
≈ 1.7 are identified in figure 4(b).

The dashed line corresponding to Pe = v0/v̄ = 10 in figure 4(b) shows two crossovers
from 〈δr 2〉 ∼ t, to 〈δr 2〉 ∼ t3 to finally 〈δr 2〉 ∼ t. As t′III ≈ t′IV ≈ 27.4 τr, the correspond-
ing crossovers from 〈δr 2〉 ∼ t to ∼t3 to ∼t is absent. The crossover times are tI/τr ∼[
6/(D̃v+Pe2)

]1/2
≈ 8× 10−6 and tII/τr ∼ 4(D̃v + Pe2)/

(
D̃v+3D̃vγ̃v+3Pe2

)
≈ 7× 10−4.

5.4. Components of displacement fluctuation

The displacement of the ABP in parallel and perpendicular directions with respect to
the initial heading direction û0 is studied here to identify any possible anisotropy in
the dynamics. The mean displacements are

〈
r‖
〉
= 〈r〉 · û0 �= 0 and 〈r⊥〉 = 〈r〉 −

〈
r‖
〉
û0.

Here 〈r⊥〉 = 0 in the absence of external drive. In this section, we compute the parallel
and normal components of MSDs and displacement fluctuations.

5.4.1. Parallel component. We consider the initial active speed v1 = v0. Without any
loss of generality, let us assume the initial heading direction of activity is toward the
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x-axis, û0 = x̂. We use equation (5). Here ψ = r2‖ = x2, giving 〈ψ〉0 = 0, 〈∇2
rψ〉s = 2〈1〉s,

〈∇2
uψ〉s = 0, 〈∂2

vψ〉s = 0, 〈(v − v0)∂vψ〉s = 0, and 〈vû · ∇ψ〉s = 2〈vxux〉s. Thus we find

〈
r2‖
〉
s
=

1

s
[2D〈1〉s + 2〈vxux〉s] .

To proceed we consider ψ = vxux, giving 〈ψ〉0 = 0, 〈∇2
rψ〉s = 0, 〈∇2

uψ〉s = −(d−
1)〈vxux〉s, and 〈û · ∇ψ〉s = 〈vu2

x〉s, leading to 〈vxux〉s = [〈v2u2
x〉s + γvv0〈xux〉s]/(s+ (d−

1)Dr + γv). Further, 〈xux〉s = 〈vu2
x〉s/(s+ (d− 1)Dr). Further, we find, 〈vu2

x〉s =
v0(s+2Dr)
s(s+2dDr)

and

〈
v2u2

x

〉
s
=

v20(s+ 2Dr)

s(s+ 2dDr)
+

4DrDv

s(s+ 2γv)(s+ 2dDr)
+

2Dv(s+ 2γv + 2Dr)

(s+ 2γv)(s+ 2dDr)(s+ 2γv + 2dDr)
.

Thus using these relations, we obtain

〈
r2‖
〉
s
=

2D

s2
+

2v20(s+ 2Dr)

s2(s+ (d− 1)Dr)(s+ 2dDr)

+
8DrDv

s2(s+ 2γv)(s+ 2dDr)(s+ γv + (d− 1)Dr)

+
4Dv(s+ 2γv + 2Dr)

s(s+ 2γv)(s+ 2dDr)(s+ 2γv + 2dDr)(s+ γv + (d− 1)Dr)
. (38)

The inverse Laplace transform gives,

〈
r2‖

〉
= 2

(
D +

v20
(d− 1)dDr

)
t+

v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

2(3− d)e−(d−1)Drt

(d− 1)2(d+ 1)
+

d2 − 4d+ 1

(d− 1)2d2

)

+ 8DrDv

[
−d2D2

r − 4dγvDr + dD2
r − γ2

v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)2

+
t

4dγvDr((d− 1)Dr + γv)

]

+
8DrDv e

−2dDrt

8d2D2
r (dDr − γv)((d+ 1)Dr − γv)

− 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

+ 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)

+ 4Dv
((d− 1)Dr − γv)e

−2dDrt

4dγvDr(dDr − γv)((d+ 1)Dr − γv)

+ 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

+ 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]
. (39)

Thus, the parallel component of the displacement fluctuation 〈δr2‖〉 = 〈r2‖〉 −
〈
r‖
〉2

is
given by,
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〈
δr2‖

〉
= 2

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

8 e−(d−1)Drt

(d− 1)2(d+ 1)
− e−2(d−1)Drt

(d− 1)2
− 4d− 1

(d− 1)2d2

)

+ 8DrDv

[
−d2D2

r − 4dγvDr + dD2
r − γ2

v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)

+
t

4dγvDr((d− 1)Dr + γv)

]

+
8DrDv e

−2dDrt

8d2D2
r(dDr − γv)((d+ 1)Dr − γv)

− 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

+ 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)

+ 4Dv
((d−1)Dr−γv)e

−2dDrt

4dγvDr(dDr−γv)((d+1)Dr − γv)

+ 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

+ 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]
.

(40)

5.4.2. Perpendicular component. The fluctuations in the perpendicular component

〈
δr2⊥

〉
=

〈
δr 2

〉
−
〈
δr2‖

〉
= 2(d− 1)

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
4e−(d−1)Drt

d2 − 1
− (d− 1)e−2dDrt

d2(d+ 1)
− 3d− 1

d2(d− 1)

)

+
2Dv

γv(γv + (d− 1)Dr)

[
t− 1− e−(γv+(d−1)Dr)t

(γv + (d− 1)Dr)
− 1− e−2γvt

2γv
+

e−2γvt − e−(d−1)Drt

((d− 1)Dr − γv)

]

− 8DrDv

[
−d2D2

r − 4dγvDr + dD2
r − γ2

v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)

+
t

4dγvDr((d− 1)Dr + γv)

]

− 8DrDv e
−2dDrt

8d2D2
r (dDr − γv)((d+ 1)Dr − γv)

+ 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

− 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)

− 4Dv
((d− 1)Dr − γv)e

−2dDrt

4dγvDr(dDr − γv)((d+ 1)Dr − γv)

− 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

− 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]
. (41)
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In figure 5, we show various possible features of 〈δr2‖〉 and 〈δr2⊥〉 at different parameter
regimes. ABPs without speed fluctuations display anisotropy in displacement fluctua-
tions, with 〈δr2‖〉 showing a crossover from ∼t to ∼t4, in contrast to the ∼t to ∼t3

crossover found in 〈δr2⊥〉 [21]. Similar asymmetry in the absence of thermal fluctuations
was pointed out before in [17]. As is shown in figures 5(a) and (b), such a clear dis-
tinction in the components of displacement fluctuation can disappear in the presence
of speed fluctuations. Depending on the Pe value, both 〈δr2‖〉 and 〈δr2⊥〉 can show ∼t to

∼t2 to ∼t crossovers, or, ∼t to ∼t3 to ∼t to ∼t2 to ∼t crossovers.
The various crossover times can also be determined. In the small time limit of t→ 0

the expression for the parallel component of displacement fluctuation in equation (40)
can be expanded to

〈
δr2‖

〉
= 2Dt+

2

3
Dvt

3 +
1

6
[2(d− 1)D2

rv
2
0 − 3Dvγv − 5(d− 1)DrDv]t

4 +O(t5). (42)

Clearly, the first diffusive to ballistic crossover appears at t
‖
I =

√
3D/Dv. In the same

small time limit of t→ 0, the perpendicular component of displacement fluctuation in
equation (41) gives

〈
δr2⊥

〉
= 2(d− 1)Dt+

2

3
(d− 1)Drv

2
0 t

3 +
1

6
[4(d− 1)DrDv + 3Dvγv

− (d− 1)(3d− 1)D2
rv

2
0

]
t4 +O(t5). (43)

Thus, the first diffusive to ballistic crossover in it appears at t⊥I =
√
3D/Drv

2
0. One

can proceed similarly, as for the analysis of MSD, to calculate all the other crossover
times for the parallel and perpendicular components of displacement fluctuations.

Remarkably, in the presence of large speed fluctuations with respect to Pe and fast
speed relaxation the parallel component of fluctuation 〈δr2‖〉 can display a sub-diffusive

behavior in between the intermediate and long time limits, as shows in figure 5(c).
It can be understood using equation (40), as follows. One can identify three diffusive
regimes from this equation. The first one is dominated by thermal diffusion, setting
(d− 1)Drt→ 0 and γvt→ 0 equation (40) leads to 〈δr2‖〉I = 2Dt. In the limit of fast

speed relaxation γv 
 Dr, using (d− 1)Drt→ 0 and γvt→∞ equation (40) leads to
the intermediate diffusive regime

〈
δr2‖

〉
II
= 2

[
D +

Dv

dγv((d− 1)Dr + γv)
+

(d− 1)Dv

dγv(γv − (d+ 1)Dr)

]
t. (44)

Finally, in the asymptotic long-time limit of (d− 1)Drt→∞ and γvt→∞, equation (40)
leads to the final diffusive regime

〈
δr2‖

〉
III

= 2

[
D +

v20
(d− 1)dDr

+
Dv

dγv((d− 1)Dr + γv)

]
t. (45)

Note that in the presence of speed fluctuations the system remains active even if the
mean active speed v0 = 0. In this limit, as can be clearly seen from equations (44) and
(45), 〈δr2‖〉III < 〈δr2‖〉II. As a result, the approach to the final diffusive regime will be
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mediated by a decrease in 〈δr2‖〉/t. On the other hand, for active particles with v0 �= 0,

such sub-diffusive behavior disappears in the absence of speed fluctuations 〈δv2〉t→∞ =
Dv/γv = 0 as 〈δr2‖〉III > 〈δr2‖〉II.

Even in the presence of finite v0, it is possible to satisfy the condition 〈δr2‖〉III −
〈δr2‖〉II < 0, which requires both γ̃v 
 1 and

γ̃v <
(d+ 1) +

√
(d+ 1)2 + 4(d− 1)2D̃v/Pe2

2
. (46)

The parameter values corresponding to figure 5(c) satisfies equation (46). Such a reduc-
tion of 〈δr2‖〉 leads to the sub-diffusive behavior observed in the long time limit in

figure 5(c).
This situation is qualitatively different from crossovers shown by 〈δr2⊥〉, as is demon-

strated in figure 5(d). For this component of fluctuation, the initial diffusive regime dom-
inated by thermal fluctuations as obtained from equation (41) setting (d− 1)Drt→ 0
and γvt→ 0 is 〈δr2⊥〉I = 2(d− 1)Dt. In the limit of the fast speed relaxation γv 
 Dr

using (d− 1)Drt→ 0 and γvt→∞, equation (41) leads to the intermediate diffusive
behavior

〈
δr2⊥

〉
II
= 2(d− 1)

[
D +

Dv

dγv((d− 1)Dr + γv)
− Dv

dγv(γv − (d+ 1)Dr)

]
t. (47)

Finally, in the asymptotic limit of (d− 1)Drt→∞ and γvt→∞, equation (41) leads to
the final diffusive regime

〈
δr2⊥

〉
III

= 2(d− 1)

[
D +

v20
(d− 1)dDr

+
Dv

dγv((d− 1)Dr + γv)

]
t. (48)

In this regime of fast speed relaxation, the difference between the final and intermediate
diffusive fluctuations of the perpendicular component of displacement 〈δr2⊥〉III − 〈δr2⊥〉II
remains always positive. Thus, figure 5(d) does not show any sub-diffusive regime, unlike
figure 5(c).

The identification of multiple crossovers in the MSD, displacement fluctuations, and
its components is the second main result of this paper.

6. Fourth moment and kurtosis

In this section, we present exact calculations for the fourth moments of active speed and
displacement. The fourth moment of speed calculated from the Fokker–Planck equation
is consistent with the underlying Gaussian process. The analytic predictions for the
fourth moment of displacement shows agreement with direct numerical simulations. We
further compute the kurtosis of displacement vector to capture the deviations from the
Gaussian fluctuations. For these calculations we consider the initial active speed of the
particle to be v1 = Pe v̄ and the initial position at the origin.
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6.1. Fourth moment of speed

Using ψ = v4 in equation (5), we get, 〈v4〉s = [v40 + 12Dv〈v2〉s + 4γvv0〈v3〉s] /(s+ 4γv),
where 〈v2〉s = v20/s+ 2Dv/s(s+ 2γv), 〈v3〉s = v30/s+ 6Dvv0/s(s+ 2γv). This leads to,

〈
v4
〉
s
=

v40
s

+
12Dvv

2
0

s(s+ 2γv)
+

24D2
v

s(s+ 2γv)(s+ 4γv)
.

Performing inverse Laplace transform we find

〈
v4
〉
= v40 +

6Dv(γvv
2
0 +Dv)

γ2
v

(
1− e−2γvt

)
− 3D2

v

γ2
v

(
1− e−4γvt

)
.

Writing v = δv + 〈v〉, Wick’s theorem for a Gaussian process predicts 〈v4〉 = 〈v〉4 +
6〈v〉2 〈δv2〉+ 3〈δv2〉2. The above expression agrees with this behavior.

6.2. Fourth moment of displacement

Using ψ = r 4 in equation (5), we get

〈
r4
〉
s
=

1

s

[
4(d+ 2)D

〈
r 2
〉
s
+ 4

〈
v(û · r)r 2

〉
s

]
, (49)

where 〈r 2〉s has been already calculated in equation (22). Similarly, using equation (5)
we can calculate the various moments necessary to evaluate 〈r4〉s. We list them below,

〈
v(û · r)r 2

〉
s
=

2(2 + d)D〈vû · r〉s + 〈v2r 2〉s + 2〈v2(û · r)2〉s + γvv0〈(û · r)r 2〉s
s+ (d− 1)Dr + γv

,

〈vû · r〉s =
〈v2〉s + γvv0〈û · r〉s
s+ (d− 1)Dr + γv

,

〈
v2r 2

〉
s
=

2dD〈v2〉s + 2〈v3û · r〉s + 2Dv〈r2〉s + 2γvv0〈vr 2〉s
s+ 2γv

,

〈
v2(û · r)2

〉
s
=

2D〈v2〉s + 2Dr〈v2r 2〉s + 2Dv〈(û · r)2〉s + 2〈v3û · r〉s + 2γvv0〈v(û · r)2〉s
s+ 2dDr + 2γv

,

〈
(û · r)r2

〉
s
=

2(2 + d)D〈û · r〉s + 〈vr 2〉s + 2〈v(û · r)2〉s
s+ (d− 1)Dr

.

The calculations of these terms, in turn, require the following results,

〈
v2
〉
s
=

v20
s

+
2Dv

s(s+ 2γv)
,

〈
v3
〉
s
=

v30
s

+
6Dvv0

s(s+ 2γv)
,

〈û · r〉s =
v0

s(s+ (d− 1)Dr)
,

〈
(û · r)2

〉
s
=

2D〈1〉s + 2Dr〈r 2〉s + 2〈vû · r〉s
s+ 2dDr

,

〈
v2û · r

〉
s
=

2Dv〈û · r〉s + 〈v3〉s + 2γvv0〈vû · r〉s
s+ (d− 1)Dr + 2γv

,
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〈
v3û · r

〉
s
=

6Dv〈v(û · r)〉s + 〈v4〉s + 3γvv0〈v2û · r〉s
s+ (d− 1)Dr + 3γv

,

〈
vr 2

〉
s
=

2dD〈v〉s + 2〈v2û · r〉s + γvv0〈r 2〉s
s+ γv

,

〈
v(û · r)2

〉
s
=

2D〈v〉s + 2Dr〈vr 2〉s + 2〈v2û · r〉s + γvv0〈(û · r)2〉s
s+ 2dDr + γv

.

Finally, performing inverse Laplace transform of equation (49) one obtains the
expression for 〈r4〉 (t). The expression is too lengthy to show here. Instead, we plot
the expression for 〈r4〉 as a function of time in figure 6. In the following, we present the
short and long time limit of 〈r4〉 (t), and analyze its behavior. In the short time limit,
an expansion of 〈r4〉 around t = 0 gives,

〈
r4
〉
= 4d(d+ 2)D2t2 + 4(d+ 2)Dv20t

3 +

(
v40 −

4(d+2)D

3

(
(d−1)Drv

2
0−2Dv

))
t4+O(t5).

(50)

It shows that a 〈r4〉 ∼ t2 scaling at shortest time, which crosses over to 〈r4〉 (t) ∼ t3

scaling at tI = dD/v20. The crossover point is obtained by comparing the first two terms
in the above expansion. A comparison between the second and third terms of the above
expansion shows that a second crossover from 〈r4〉 ∼ t3 to ∼t4 can appear at,

tII =
12(d+ 2)Dv20

3v40 − 4(d+ 2)D((d− 1)Drv20 − 2Dv)
,

provided tII > tI. In the long time limit, 〈r4〉 approaches,

〈
r4
〉
≈ 4(2 + d)[(d− 1)Dr(Dv + dDγv((d− 1)Dr + γv)) + γv((d− 1)Dr + γv)v

2
0]

2

d(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

t2.

In figures 6(a) and (b), we show comparisons between the analytic expression for 〈r4〉
and the direct numerical simulation result for this fourth moment to find clear agreement
between them. Figure 6(a) corresponds to the limit Dr � γv and figure 6(b) is plotted
for parameter values obeying Dr 
 γv.

6.3. Kurtosis: deviations from the Gaussian process

For a Gaussian process with non-zero mean, the definition of the fourth moment of
displacement can be expressed as,

μ4 :=
〈
r 2
〉2

+
2

d

(〈
r 2
〉2 − 〈r〉4

)
. (51)

Thus, deviations from such a Gaussian process is captured by the kurtosis

K =
〈r4〉
μ4

− 1. (52)
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Figure 6. Persistent motion: plots of
〈
r4
〉
(a) and (b) and Kurtosis (K) (c) and

(d) as a function of time in two dimensions. (a), (c) Parameter values used are
γ̃v = 102, D̃v = 4× 104, and Pe = 7.07. (b), (d) Parameter values used are γ̃v =
5× 10−2, D̃v = 0.25, and Pe = 3.54. The points denote simulation results averaged
over 106 independent trajectories. The solid lines depict analytic results obtained
from the inverse Laplace transform of equation (49). The orange line in (c) and
(d) corresponds to zero kurtosis. Initial conditions used are speed v1/v̄ = Pe and
heading direction û0 = x̂. The maximum and minimum values of K in (c) ((d)) are
0.22 (0.27) and −0.22 (−0.20).

Figures 6(c) and (d) show the kurtosis as a function of time. A non-zero value of the kur-
tosis indicates deviations of the stochastic process from a possible Gaussian nature. A
positive value appears for distributions with tails longer than normal distributions, while
a negative value indicates a tail less extreme than the normal distributions. Figure 6(c)
corresponds to 〈r4〉 in figure 6(a) in the limit of Dr 
 γv. It shows deviations to pos-
itive values at shorter times and negative values at longer times before returning to
the Gaussian behavior for long enough trajectories. The plot of kurtosis in figure 6(d)
corresponds to 〈r4〉 in figure 6(b) in the limit of Dr � γv. In contrast to figure 6(c),
in this parameter regime, the kurtosis shows deviations to negative values at shorter
times that changes to positive values at longer times before returning to the Gaussian
nature at the longest time scales. As it has been shown in [21], the orientational fluc-
tuations of the heading direction leads to negative kurtosis in the intermediate times.
The positive kurtosis observed here is determined by the active speed fluctuations that
was not considered before. In figure 6(c) with γ̃v 
 1, the orientational fluctuation time
scale is longer than the speed fluctuation time scale. As a result, the negative kurtosis
appears at a later time and the positive kurtosis at a shorter time. On the other hand,
in figure 6(d) with γ̃v � 1, the shorter orientational fluctuation time scale leads to the
appearance of negative kurtosis at shorter times and positive kurtosis at longer times.
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The presence of positive and negative kurtosis in the intermediate times due to the
competition between orientational and speed relaxation is the third main result of this
paper.

7. Discussion

In this paper we presented a detailed study of the dynamics of ABPs with speed
fluctuations, in the presence of thermal diffusion. In our model, two independent
time scales describe the stochastic change of heading direction and speed. Here we
considered the active speed generation in the Schienbein–Gruler model of simple energy
pump [35, 36]. We have extended the Fokker–Planck equation based method devel-
oped in [21, 49] to calculate all the relevant dynamical moments of motion in arbitrary
dimensions. We presented some of these calculations in detail.

First, we calculated the MSD in d-dimensions. As we showed, the same expres-
sion for MSD can be obtained from a direct calculation from the Langevin equations
using the generic two-time autocorrelation function of active speed. In the limit of fast
speed relaxation, a time-scale separation can be used. In that limit, using the steady-
state result of the active speed autocorrelation, our expression for MSD reduces to the
previously obtained result for 2d [36, 48]. In addition to MSD, we calculated the fluctu-
ations of the displacement vector, its components along and perpendicular to the initial
heading direction, and its fourth moment. These calculations showed several dynamical
crossovers that we analyzed in detail and obtained expressions for the crossover times.
The kind and number of crossovers observed depends on the parameter values used.
While the crossovers do not depend on the embedding dimensions, the crossover times
do. We calculated the kurtosis of the displacement vector to capture departures from
the Gaussian nature in intermediate times. The kurtosis deviates toward a positive value
when the speed fluctuation dominates and a negative value as the orientation fluctuation
dominates.

Generation of active motion involves stochastic processes associating noise and relax-
ation to the active speed. Our predictions can be tested in experiments on artificial active
particles, e.g., self-propulsion of Janus colloids [3, 38, 39]. Further, our results can be
used in analyzing the dynamics of motile cells having both speed and directional fluctu-
ations [41–43]. Note that speed fluctuations can arise due to collision between particles
in active colloids leading to effective speeds dependent on local concentration. Many
bacteria display alternating speeds of propagation switching between high and low val-
ues [53] or even between run and stop [54]. Some of them also show chiral active motion
[43]. Our methods can be extended for the description of non-equilibrium dynamics of
such systems that remain yet to be fully understood.
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Figure A1. Cumulative distribution function F (vm) in equation (A.3) as a function
of vm at D̃v = 1. (a) Pe = 0, 1, 5 and γ̃v = 1. (b) γ̃v = 0.1, 1, 10 and Pe = 1.

MTR/2019/000750 and International Centre for Theoretical Sciences (ICTS) for an
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Appendix A. Steady state probability distribution of speed and its cumulative
distribution

The evolution equation of probability distribution of speed P (v, t) derived from the
Schienbein–Gruler mechanism [36] of active speed generation as in equation (2), obeys
the following Fokker–Planck equation

∂tP (v, t) = Dv∂
2
vP + γv∂v[(v − v0)P ]. (A.1)

The normalized steady-state distribution calculated from equation (A.1) has a Gaussian
form peaked around the speed v0,

Ps(v) =

(
γv

2πDv

)1/2

exp

(
− γv
2Dv

(v − v0)
2

)
. (A.2)

The cumulative distribution function of speed up to a maximum value vm is

F (vm) =

(
γv

2πDv

)1/2∫ vm

−∞
dv exp

(
− γv
2Dv

(v − v0)
2

)

=
1

2

[
1 + erf

(
vm − v0√
2Dv/γv

)]
. (A.3)

In figure A1, we show the variation of cumulative distribution function for speed with
changing Pe = v0/v̄ and γ̃v = γvτr. The probability of getting negative speed, an effective
active speed opposite to the heading direction, decreases with increase of v0 and γv.
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Appendix B. Autocorrelation of active speed

Here, we calculate the active speed autocorrelation function directly from the governing
Langevin equation (2). The formal solution of equation (2) with the initial condition
v(t = 0) = v1 is

v(t) = v1 e
−γvt +

∫ t

0

(
γvv0 +

√
2DvΛ(t

′)
)
e−γv(t−t′) dt′, (B.1)

with 〈Λ(t)〉 = 0, and 〈Λ(t)Λ(t′)〉 = δ(t− t′). In this expression, the integration of the
second term gives,

I =

∫ t

0

γvv0 e
−γv(t−t′) dt′ = γvv0 e

−γvt

∫ t

0

eγvt
′
dt′ = v0(1− e−γvt).

This allows us to calculate the instantaneous mean speed

〈v(t)〉 = v1 e
−γvt + v0

(
1− e−γvt

)
. (B.2)

Thus, the deviation of speed from its mean value

δv(t) ≡ v(t)− 〈v(t)〉 =
√
2Dv e

−γvt

∫ t

0

Λ(t′)eγvt
′
dt′. (B.3)

As a result, the speed autocorrelation function of speed fluctuations can be calculated
as

〈δv(t1)δv(t2)〉 = 2Dve
−γv(t1+t2)

∫ t1

0

dt′1

∫ t2

0

dt′2 e
γv(t

′
1+t′2)δ(t′1 − t′2). (B.4)

If (t1 > t2), the δ(t′1 − t′2) restricts the integration over t′1 = t′2 line, then t′1 effectively
runs up to t2.

〈δv(t1)δv(t2)〉 =
Dv

γv

[
e−γv(t1−t2) − e−γv(t1+t2)

]
. (B.5)

The steady state correlation may be obtained by, letting t1, t2 →∞ and keeping
τ = t1 − t2 finite,

〈δv(τ)δv(0)〉 = Dv

γv
e−γvτ . (B.6)

In the steady state limit the instantaneous fluctuation, 〈δv2(0)〉 = Dv/γv. Thus we may
write, speed correlation in normalized form,

〈δv(τ)δv(0)〉
〈δv2(0)〉 = e−γvτ . (B.7)

The fluctuation in speed can be derived from equation (B.5) by setting t1 = t2 ≡ t,

〈δv2(t)〉
〈δv2(0)〉 =

(
1− e−2γvt

)
. (B.8)
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Figure C1. Velocity distributions at time tDr = 1 in d = 2, using D = 0, γ̃v = 1,
v0
√

Dr/Dv = 10. Initial orientation of the ABP is chosen to be along x-axis. (a)
Heat map of the velocity distribution in the vx–vy plane. (b) A comparison of
the active speed distribution p(v) obtained from numerical simulations (solid line)
with the steady state distribution in equation (A.2) (dashed line). (c) The marginal
velocity distributions p(vx) (red line) and p(vy) (green line). In the figure labels i
stands for x, y components.

Appendix C. Velocity distribution

Here we calculate velocity distributions at time tDr = 1 in d = 2 by direct numerical
integration of equations (1)–(3) using time step dt = 0.01D−1

r . Parameter values used

are D = 0, γ̃v = 1, v0
√

Dr/Dv = 10. The distribution functions are calculated using 107

trajectories. We consider the initial orientation of the active particle along the x-axis.
In figure C1(a), we show the heat map of the velocity distribution in the vx–vy plane.
The excess weight around the positive x-direction is due to the persistence that remain
pronounced for tDr = 1. Figure C1(b) compares the simulated distribution of active
speed v at this time with the analytic expression for the steady state distribution shown
in equation (A.2). The slight deviation from steady state achieved at γvt 
 1 is visible.
Figure C1(c) shows the marginal velocity distributions p(vx) (red line) and p(vy) (green
line) at this time.
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