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Cooperation and competition in the collective
drive by motor proteins: mean active force,
fluctuations, and self-load

Chitrak Karanab and Debasish Chaudhuri *ab

We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are

attached irreversibly to a substrate and undergo stochastic attachment–detachment with the filament to

produce a directed force on it. We establish the dependence of the mean directed force and force cor-

relations on the parameters describing the individual motor proteins using analytical theory and direct

numerical simulations. The effective Langevin description for the filament motion gives mean-squared

displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we

show how competition between motor protein extensions generates a self-load, describable in terms of

the effective temperature, affecting the filament motion.

1 Introduction

Motor proteins (MP) are an integral part of the cytoskeleton in
eukaryotic cells.1–3 They are involved in a wide span of functions in
subcellular processes, e.g., intracellular transport of cargo, cytos-
keletal dynamics, stress generation, and cell locomotion. They
hydrolyze ATP to undergo attachment–detachment and perform
directed motion along conjugate filaments in the attached state.4–8

For example, kinesin and dynein families of MPs move along
microtubules, and the myosin family of MPs can move along
filamentous actins. Their motion is load-dependent9,10 and the
maximum velocity they can attain is subject to the available ATP
concentration.11 The local dissipation of chemical potential by ATP
hydrolysis drives MPs out of equilibrium. Their direction of
motion is determined by the local front-back asymmetry of con-
jugate filaments they can walk on. Generating non-equilibrium
drive at the smallest scales, MPs constitute a class of active
matter12–14 in which the time-reversal symmetry and equilibrium
fluctuation–dissipation relations are broken.

In living cells, MPs work together to transport various cargo,
including organelles.15–19 From a few to hundreds of MPs can
participate in such transport.20–25 Theoretical studies of multiple
MP-driven cargo dynamics use either equal load sharing approxi-
mation or detailed numerical simulations of a finite number of
MPs.26–33 The coupling between MPs can arise from a direct
mechanical linkage as in myosin filaments,34 molecular crowding

effects,35,36 or binding to cargo, the possible impacts of which have
not yet been completely understood. Elastically coupled MPs
show strain-induced unbinding and stalling.37–39 For weak
coupling, effective unbinding rate and average cargo velocity
return to the non-interacting limit of single motor behavior. In
addition to performing intracellular transport, MPs can produce
local active stress by sliding filaments against membrane or
other filaments.12,40–42 Thereby MPs promote the organization
and dynamics of the mitotic spindle and positioning of micro-
tubule asters.41,43–45

Important insights into the working of MPs have been
gained from in vitro gliding assay experiments.46–52 In them,
the MP tails are attached irreversibly to a substrate. The head
domains of MPs can attach to conjugate filaments and, while
walking on them, drive the filaments in the opposite direction.
This generates an active motion of filaments. The motion of actin
filaments driven by myosin bed showed two intriguing
properties.49,50 The speed of the filament increases to saturate
as the density of myosins increases. Moreover, pinned filaments
show spiraling motion at high MP density.49,50 Cooperation and
competition between MPs in driving cargo generate rich
dynamics.53–60 In a large assembly of F-actins or microtubules
driven by such an MP bed of conjugate MPs, intriguing collective
motion, including gliding, swirling, and spiral formation was
observed.61–64 The motion of MP-driven semiflexible filaments
led to several remarkable properties, including dynamical transi-
tions between spiral and open chain conformations.65–67 Other
active polymer models with the tangential drive led to similar
behaviors.68–71 However, in the absence of direct mapping, it
remains unclear what kind of MP activity can lead to which
dynamical property of filaments.
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In this paper, we consider the dynamics of a rigid filament
driven by a gliding assay of conjugate MPs. We develop an
active bath description of the filament motion identifying and
characterizing the mean force and force fluctuations due to the
MP assay. We find that a lack of synchrony in the MP extension
generates a self-load, reducing the efficiency with which many
MPs can drive the filament together. For this, we utilize direct
numerical simulations of the stochastic dynamics of MPs and
the filament and formulate an approximate analytic theory
using a mean-field approach. Our work builds on the recent
extensions of thermodynamic concepts to active matter,72–75

and descriptions of tracer dynamics in active particle bath.76,77

Our main achievements in this paper are the following: (i) we
obtain approximate analytic expressions for the mean force and
force correlation. (ii) We derive an approximate expression for
the self-load utilizing an effective temperature. Our first result
directly connects the active forces felt by the filament to MP
properties. It can be utilized in future active polymer modeling
for the many-body dynamics of MP-driven biological filaments.
Direct comparisons between our numerical results to analytic
expressions show good quantitative agreement in several cases
and qualitative agreement in others.

In Section 2 we present the detailed model. Results of
numerical simulations, derivations of approximate analytic
expressions for mean force and force correlations, and
fluctuation-response are presented in Sections 3.1 and 3.2.
The appearance of self-load is discussed in Section 3.3. Finally,
we conclude in Section 4 by summarizing the main results.

2 Model

We consider a gliding assay (Fig. 1) in which the tails of MPs are
attached irreversibly to a substrate. MP stems are assumed to
be active extensile springs of stiffness km. The MP heads can
bind to the filament with a constant rate oa in a diffusion-
limited manner. The attached MP head can extend along the
filament in a directed fashion. This requires an active extension
of MPs consuming energy from ATP hydrolysis. The extension

velocity of i-th MP, vi
m, depends on the load force fli = kmyi due

to its extension yi. We adopt a piece-wise linear form of the
force-dependent velocity of MPs,10,53

vimð f1iÞ ¼

v0 for f1
i � 0

v0 1� f1
i

fs

� �
for 0o f1

i o fb; fb 4 fs

�vback for f1
i 4 fb

8>>>>><
>>>>>:

(1)

where fs is the stall force, and v0 denotes the intrinsic MP velocity.
For a load force beyond the stall force, fl Z fb 4 fs, the velocity
saturates to an extremely small negative value, �vback.10,53 Suppor-
tive loads do not affect the intrinsic MP motion. Assuming slip
bonds, MPs can detach from the filament with a load-dependent
rate, ooff = od exp(| f l

i|/fd). These attachment–detachment kinetics
break detailed balance. An attached motor moves along the
filament stochastically with a rate vm/s, where s is the step size
of the motion.

The mechanical force balance determines the over-damped
dynamics of the filament position x,

gf
:
x = Fm + Fe (2)

where the left-hand side corresponds to the friction force,
characterized by gf and the associated motion of the filament,
:
x, relative to the substrate. The na number of attached MPs

exert a total force Fm ¼ �
Pna
i¼1

f il . Here, Fe denotes any external

force acting on the filament. The filament motion can drag the
attached MPs along with it. Thus the extension of the i-th MP
evolves as

:
yi = vi

m( f l
i) + :

x (3)

In the simulation, we discretize the one-dimensional fila-
ment into beads separated by a length s, chosen to be the same
as the MP step-size. Such a discretization is considered to
incorporate a capture radius rc = s/2 for the heads of detached
MPs to attach to a nearby filament segment with a rate oa. The
attached head of i-th MP moves unidirectionally in a stochastic
manner with hopping rate vi

m/s and by a step-size s. The
resultant extension of the MP produces an active force on the
filament. All such forces add up to external force to displace the
filament position. MPs detach from the filament with a rate ooff

that depends on the extension yi as outlined above. We consider
the filament to have a length L = 103s. The separation between
the consecutive positions to which MP tails are irreversibly
attached is L/N. We vary N, keeping L constant to change the
MP density.

To express the dynamical quantities in a dimensionless
form we use time scale od

�1, length scale v0od
�1 and force

scale gfv0. We get t̃ = tod, x̃ = xod/v0, ṽ = v/v0, f̃ = %f/gfv0, k̃m = km/
gfod. We perform Euler integration of eqn (2). The attachment–
detachment and displacement of i-th MP position are updated
using the Monte-Carlo method governed by rates oa, ooff and
vi

m/s respectively. In updating the actual yis, filament displace-
ment is also added. We perform numerical simulations using

Fig. 1 (a) Schematic diagram of a gliding assay of MPs driving a conjugate
filament. MP heads attached to the filament are denoted by red, and that
detached from the filament are shown in blue. (b) Side view: an attached
kinesin (red) walks along the filament towards the plus end with velocity
vm, pulling the filament in the opposite direction. Fe denotes a possible
external force. The filament velocity is v. The MPs undergo attachment–
detachment with rates oa and ooff, respectively.
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experimentally measured parameter values for kinesins and
microtubules shown in Table 1. Unless specified otherwise, the
numerical results use the values listed in the table.

3 Results
3.1 Active Langevin motion

From numerical simulations, we find that the dynamics of the
filament driven by MPs can be expressed in terms of the
following Langevin equation

gf
:
x = f (t) = %f + df (t) (4)

where the mean force h f (t)i = %f. The stochastic fluctuation df =
f (t) � %f has the mean hdf (t)i = 0, and shows an exponential
correlation Cdf (t) = hdf (t)df (t0)i = Ce�|t�t0|/t with C = hdf 2(0)i (see
Fig. 2). Such a colored noise arises from an underlying Orn-
stein–Uhlenbeck process with relaxation time t.81 In the rest of
this section, we obtain approximate analytic expressions for %f
and Cdf (t) in terms of MP number and properties.

3.1.1 Mean force. Using mean-field approximation, con-
sidering each MP to be identical and independent, we first

obtain an estimate of %f. The dynamical equations can be written
as (Appendix A)

h _nai ¼ ðN � hnaiÞoa � hnaiode
kmhyi=fd ;

h _yi �v0ð1� kmhyi=fsÞ þ h _xi;

gfh _xi ¼ � hnaikmhyi þ Fe;

(5)

where y ¼ ð1=naÞ
Pna
i¼1

yi denotes the arithmetic mean of MP

extensions. We further replaced the mean detachment rate
o0 = odhekmy/fdi with the lower bound odekmhyi/fd (Appendix A).

At the stall condition h :yi = 0, eqn (5) gives

gfh _xi ¼ � hnaifs

1þ hnaifs
gfv0

þ Fe

1þ hnaifs
gfv0

; (6)

a behavior similar to that in ref. 26. Here the first term on the
right-hand side is the mean active force h f i due to MPs. The
scaled dimensionless form f̃ = h f i/gfv0 can be expressed as,

~f ¼ � hnai~fs
1þ hnai~fs

; (7)

where ~fs ¼
fs

gfv0
. In the absence of external force, this relation

gives the scaled mean velocity of the filament v/v0 = ṽ. It
increases with the number of associated MPs to saturate.

The steady-state estimate of the number of attached MPs

�na ¼
oa

ðoa þ o0Þ
N ¼ ON (8)

can be obtained by setting h :nai = 0, where o0 = odhekmy/fdi and
O = oa/(oa + o0) denotes the processivity. In Fig. 2(a) we show
the variation of f̃ with N using the processivity O = 0.52 obtained
for the unloaded filament (see Fig. 6(a) in Appendix B). The
qualitative feature of the numerical observation agrees with the
analytic expression. However, simulation results show a smaller
value than the analytic estimate. The saturation value of
numerically obtained f̃ remains smaller than the prediction of
saturation �f̃ = 1 obtained from eqn (7). The reason for the
discrepancy will be considered carefully in Section 3.3.

Despite the non-linearity of the mean filament velocity, it is
remarkable that the stall force of the filament Fs

e = hnaifs,
obtained by using h :xi = 0 in eqn (6), remains proportional to
the number of MPs in agreement with earlier results.6,26,32

Thus the study of the stall force of filament gives a good
measure for the number of cargo-bound MPs.22,23

Moreover, eqn (6) gives a prediction for the effective viscous
drag in the presence of MPs

geff = gf(1 + hnaif̃s) (9)

Similar linear growth in the drag coefficient was observed in
phenomenological models studied earlier.82,83 Note that the
linear growth of geff with the mean number of active MPs differ
qualitatively from the exponential growth due to passive cross-
linkers.78

Table 1 Parameters: The values correspond to kinesin-1 MP at ATP
concentrations of 2 mM. gf denotes the longitudinal drag coefficient of a
microtubule of length B 10 mm44,78

Definition Parameters Values

Active velocity v0 0.4 mm s�1 9,11

Stall force fs 7.5 pN9,10

Back velocity vback 0.02 mm s�1 10

Detachment force fd 2.4 pN44

Attachment rate oa 5 s�1 11,56

Detachment rate od 1 s�1 9

Motor stiffness km 300 pN mm�1 79

MT viscous friction gf 3.75 pN s mm�1 78

Motor step-size s 0.008 mm80

Fig. 2 Properties of mean force and force fluctuations. We plot f̃ = %f/(gfv0),
~t = tod, C̃ = C/(gfv0)2. (a) The points show simulation results for �f̃ as a
function of N. The black solid line plots eqn (7) with O = 0.52. (b) Two-time
correlation of force fluctuations Cdf(t) obtained from numerical simulations
using N = 8 ( ), 16 ( ), 40 ( ), 80 ( ), 160 ( ). The solid lines show
exponential fits for correlation times t. (c) Points denote the numerically
obtained correlation times and the black solid line is the analytical plot of t
= tel using eqn (12). (d) Points denote C̃ obtained numerically, and the
black solid line plots eqn (19). For the analytical plots shown above we
substitute hnai by %na with O = 0.52.
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Further, comparing eqn (5) with eqn (6) we get an estimate
of the mean extension at stall

km�y ¼ fs
1þ ~fe

1þ hnai~fs
(10)

where ~fe ¼
Fe

gfv0
. This expression shows good agreement with

the simulation results (see Fig. 6(b) in Appendix B).
3.1.2 Force correlation. The two-time correlation of force

fluctuations is given by km
�2hdf ðtÞdf ðt 0Þi ¼

P
i; j

dyiðtÞdyjðt 0Þ
* +

.

Determination of a closed-form analytic expression for this corre-
lation function is challenging. In the presence of precise synchrony
between the extensions of different MPs, one can replace dyj(t) =

dyi(t).† This leads to km
�2hdf ðtÞdf ðt 0Þi ¼

P
i; j

dyiðtÞdyiðt 0Þ
* +

. To

estimate the correlation between MP extensions, we proceed as
follows.

Relaxation of MP length in the attached state can be
analyzed by combining the second and third equations in
eqn (5) giving

h _yi ¼ v0 þ
Fe

gf

� �
� hyi

tel
(11)

with an elastic relaxation time

tel ¼
1

~km

~fs

1þ hnai~fs

 !
od
�1 (12)

where k̃m = km/gfod.
The stochastic motion of each unloaded MP in the attached

state can be treated as a Poisson process in which the MP
moves in a directed fashion with a stochastic rate a = v0/s where
s is the MP step-size. The probability Pm for the MP to be at m-
th site at time t evolves as dPm/dt = aPm�1 � aPm with the initial
condition Pm(t = 0) = dm,0. The solution gives the Poisson
distribution Pm(t) = e�at(at)m/m!. Thus the fluctuation in dis-
placement hdy2(t)i = s2hdm2i where hdm2i = [hm2i � hmi2] = at, as
hmi = at, hm2i = (at)2 + at. Writing hdy2i = 2Dyt, we get the
expression for effective diffusivity for each MP around the
mean drift

Dy = v0s/2 (13)

To obtain an estimate of the correlation in the arithmetic mean
extension y of hnai flexible linkers corresponding to the MPs, we
add the stochasticity mentioned above, arising from the Pois-
son process to the mean-field dynamics eqn (11). In the
absence of external force, this leads to the following Orn-
stein–Uhlenbeck process

:y = v0 � y/tel + (2Dy/hnai)1/2Z(t) (14)

where the white noise obeys hZ(t)i = 0, hZ(t)Z(t0)i = d(t � t0).
Considering the extensions of MPs as independent random

variables, the standard deviation of their sum grows as
ffiffiffiffiffiffiffiffiffi
hnai

p
.

This led to the hnai�1/2 decay in the fluctuation strength (2Dy/
hnai)1/2 around the mean extension. The mean-field limit is
obtained for large N. It is straightforward to solve the Langevin
equation eqn (14) to find

h y(t)y(t0)i = h yi2 + (Dytel/hnai)e�|t�t0|/tel (15)

which leads to

hdy(t)dy(t0)i = (Dytel/hnai)e�|t�t0|/tel (16)

for a given hnai. We proceed by replacing the extension correla-
tion for i-th MP hdyi(t)dyi(t0)i with the correlation for the
arithmetic mean extension hdy(t)dy(t0)i.

Within this approximation,
P
i; j

dyiðtÞdyiðt 0Þi �
*

hnaðtÞi2hdyðtÞdyðt 0Þi using the above expression for extension
correlation obtained for a given hnai. The time scale tad deter-
mining the correlation hna(t)na(t0)i (see Appendix C) is much
longer than the relaxation time tel, allowing the above approxi-
mation in which hnai is held fixed. Within this approximation,
the force and its fluctuations arise essentially due to the
extension of MPs attached to the filament. The correlation in
force fluctuation can then be expressed as

Cdf (t) = hdf (t)df (0)i E Ce�t/tel (17)

with

C = hnaikm
2Dytel (18)

where the steady-state estimate for the number of attached MPs
can be used instead of hnai for comparison with the numerical
results.

In deriving this expression, we used the fluctuation of
extension of attached MPs, neglecting the relatively slow evolu-
tion of the attachment detachment process. At attachment,
MPs remain unextended; as a result, it does not change the
force immediately. However, the detachment of extended MPs
can cause significant force fluctuations. We could not incorpo-
rate this mechanism within our simple analytic approach. Our
estimated strength of force fluctuation C given by eqn (18)
remains smaller than the numerical observations (Fig. 2(d)). It
is possible to use Fokker–Planck equations describing MPs’
attachment–detachment–extension dynamics and calculate the
correlation functions directly. However, getting a complete
closed-form analytic expression remains challenging.

The above expression captures the exponential decay of
correlation functions in Fig. (2)(b). The correlation time t = tel

decreases with N following eqn (12). This estimate shows excellent
agreement with simulation results for correlation time shown in
Fig. (2)(c). According to the above estimate, the dimensionless
force fluctuation

~C ¼ C

ðgfv0Þ2
¼ skm

2gfv0

hnai~fs
1þ hnai~fs

(19)

grows with N to saturate. This feature agrees qualitatively with the
simulation results presented in Fig. (2)(d). We verified from
numerical simulations that C p v0.

† In the absence of synchrony hdyi(t)dyj (t0)i = dijhdyi(t)dyi(t0)i. We discuss later the
impact of reduced synchrony in a self-load generation.
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The calculation of the mean force in eqn (7), force fluctua-
tion strength C̃ in eqn (19) and the correlation time t = tel

in eqn (12) completes the description of MP driven filament
motion as an active Ornstein–Uhlenbeck process given by
eqn (4). This is the first main achievement of this paper.

3.2 Fluctuation, response, and effective temperature

The Langevin equation eqn (4) can be directly solved to show

that the mean displacement increases with time as hxi ¼
�f

gf
t

and the mean-squared deviation hdx2i = hx2i � hxi2 shows

hdx2iðtÞ ¼ 2Ctel
gf2

t� telð1� e�t=telÞ
h i

(20)

using the correlation time t = tel.
This expression predicts a ballistic-diffusive cross-over

around t = tel such that, hdx2i � C

gf2
t2 for t { tel and in the

long-time limit of t c tel hdx2i E 2Defft (see Fig. 3(a)) with

Deff ¼
Ctel
gf2
¼ hnai~fs2

ð1þ hnai~fsÞ2
sv0
2
: (21)

Here, the attached MPs lead to displacement fluctuations. In
the absence of an explicit translational noise, Deff = 0 when
N = 0. On the other hand, for large N, the effective diffusion
constant decreases as N�1. Such large N dependence of the
effective filament diffusivity agrees with the earlier estimate in
ref. 33. Direct numerical simulation results presented in
Fig. 4(a) concur with this prediction.

The reliability in stochastic transport, in the presence
of such fluctuations, can be quantified by the asymptotic

coefficient of variation y ¼
ffiffiffiffiffiffiffiffiffiffiffi
hdx2i

p
=hxi3,33 or the Fano factor

f = hdx2i/hxi.84 We find

y ¼ s
hnaiv0

� �1=2

t�1=2; (22)

showing that y decreases with both the chemical activity v0

and the number of MPs, increasing transport reliability. The
asymptotic displacement Fano factor measuring fluctuations in
transport

f ¼ s~fs

1þ hnai~fs
(23)

reduces as N�1 for a large number of MPs.
The velocity response of the filament due to external load

force acting against the MP drive is obtained from numerical
simulations and shown in Fig. 3(b). The filament velocity
decreases with the load, first linearly and then more sharply
at a larger load. The figure shows that the force response
strongly depends on the number of MPs acting on the load.
The mobility at zero load can be obtained numerically from the
slope of the force-velocity graph Fig. 3(b) near f̃e = 0. The
analytical estimate of the effective mobility meff = geff

�1 is given
by eqn (9) and has the form

meff ¼ gf
�1 1

1þ hnai~fs
: (24)

This predicts that for large N the mobility should scale as
N�1, in agreement with the numerical simulation result for meff

shown in Fig. 4(a).
The equilibrium Einstein relation connecting mobility and

diffusivity via bath temperature does not generally hold in
systems out of equilibrium. Even in a steady state, the general-
ized fluctuation-response relation involves an additive correc-
tion that depends on the steady-state current.85–89 As we found
from numerical simulations, the diffusivity of the filament
remains proportional to its mobility at all values of activity.

Fig. 3 Displacement fluctuation and force-response. We use dimension-
less quantities x̃ = x/(v0od

�1), t̃ = tod, ṽ = v/v0 and f̃e = Fe/(gfv0). (a) Points
denote simulation results and the black solid line plots eqn (20) for a
filament driven by N = 8 MPs. While plotting we use hnai = %na in the
expression of tel. (b) Velocity response of force for the filament driven by
N = 4, 8, 16, 40, 80, 120, 160 MPs with the arrow denoting the direction of
increasing N. Velocity decreases linearly for small forces (e.g., the dashed
line) before the onset of non-linear decrease at a higher load.

Fig. 4 Mobility, diffusivity and effective temperature. We plot dimension-
less quantities ~meff = meffgf and D̃eff = Deff/(v0

2od
�1). (a) Points ( ) denote

simulation results for mobility (asymptotic diffusivity). The dashed line
depicts a N�1 scaling. (b) Points denote numerical results for D̃eff and ~meff.
The black solid line plots Deff = meff TN

eff.
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This allows us to use the ratio of long-time diffusivity and
mobility, eqn (21) and (24), to define an effective temperature,

Teff ¼
Deff

meff
which can be expressed as

Teff

T1eff
¼ hnai~fs

1þ hnai~fs
; whereT1eff ¼

sfs
2

(25)

is the N-independent, effective temperature obtained in the

large N limit. This is given by the energy dissipation
sfs
2

by MPs

per motor cycle. The line in Fig. 4(b) shows that Deff approaches
meff TN

eff asymptotically for large N. In this case, the short
correlation time tel in fluctuations of active force allows
for an estimate of equilibrium-like effective temperature,
which will be utilized in the following section to describe the
self-load.

3.3 Cooperativity and self-load

Finally, we return to the dependence of filament velocity on the
number of MPs. This is shown for MPs with different spring
constants km in Fig. 5(a). The saturation values remain smaller
than the mean-field prediction of �f̃/gf with f̃ given by eqn (7)
and reduces further with increasing km. This behavior is due to
the generation of a self-load resulting from a lack of synchrony
between different MP extensions.

At this stage, let us assume a local thermodynamic equili-
brium to use the effective temperature Teff, characterizing
the active filament fluctuations, to determine the amount of
fluctuation in i-th MP extension hyi

2i = Teff/km. This approxi-
mation shows reasonable agreement with the numerical eva-
luation of hyi

2i as a function of km (see Fig. 6 in Appendix B).
The relative extension of MPs can be expressed as h(y1 � y2)2i =
2(1 � a) hy1

2i using hy1y2i = ahy1
2i where a quantifies

the amount of synchrony between extensions of two MPs.
This leads to

hðy1 � y2Þ2i ¼
2ð1� aÞTeff

km
: (26)

If the extensions are perfectly in synchrony, a = 1, which gives
h(y1 � y2)2i = 0. However, in general a o 1. The inset of Fig. 5(a)
shows that relative fluctuations obtained from numerical
simulations indeed varies as h(y1 � y2)2i B 1/km. The self-
load due to the relative fluctuation has a measure fsl = kmysl with
ysl = h(y1 � y2)2i1/2. As a result, we obtain fsl = [2(1 � a)kmTeff]1/2,
which can be expressed as

fsl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞkmT1eff

q hnai~fs
1þ hnai~fs

 !1=2

: (27)

In eqn (6), replacing external load Fe by the net self load hnaifsl

due to hnai MPs, we obtain the following relation for the
filament velocity

~v ¼ � _x

v0
¼ hnaið

~fs � ~fslÞ
1þ hnai~fs

; (28)

where f̃sl = fsl/gfv0. In the absence of self-load, the active force
acting on the filament arises due to the MP stall force fs. The
self-load fsl acts against this active force to reduce its impact.

Using a = 0.95, the expression in eqn (28) along with eqn (27)
captures the dependence of filament velocity ṽ on number of
MPs N, for all values of km (see Fig. 5(a)). Thus the quantitative
loss in synchrony is 5% and is independent of km. Moreover,
eqn (27) shows that fsl B km

1/2. This expression captures the
decrease in ṽ with increasing km, as shown in Fig. 5(b). In the
limit of large N, the expression simplifies to ṽ = 1 � fsl/fs. The
solid line in Fig. 5(b) plots this expression with a = 0.95. Similar
reductions in velocity with increasing spring stiffness have
been recently observed in numerical simulations presented in

Fig. 5 Dependence of filament velocity on MP number and stiffness. We
use dimensionless quantities k̃m = km/(gfod), ỹi = yi/(v0od

�1), and ṽ = v/v0. (a)
ṽ grows and saturates with N. Different point types denote different values
of k̃m = 13.33 ( ), 26.67 ( ), 53.33 ( ), 80 ( ), 106.67 ( ). The black solid
line plots eqn (28) using eqn (27) with a = 0.95. In this plot we use hnai = %na.
Inset: Relative fluctuations in extension for N = 4 ( ) 8 ( ) 16 ( ) 160 ( )
The blue dash-dotted line shows a 1/km scaling. (b) Points denote simula-
tion results for ṽ as a function of k̃m for N = 160. The black solid line plots

ṽ = 1 � fsl/fs where the asymptotic value of self-load fsl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞkmT1eff

p
with a = 0.95.

Fig. 6 (a) Points denote simulation results for %na as a function of N. The
black solid line plots %na = ON with the processivity O = 0.52. (b) The scaled
extension k̃mỹ = kmy/(gfv0) obtained from numerical simulations are shown
by points. The black solid lines plots eqn (10). While plotting we use hnai =
%na. (c) Points denote simulation results for scaled mean squared extension
hỹ2i = hy2i/(v0od

�1)2 as a function of scaled motor stiffness k̃m = km/(gfod),

for N = 40. The black solid line plots h~y2i ¼
~T1eff
~km

where T̃N

eff = TN

eff/(gfv0
2od

�1).
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ref. 90. Our theory provides a clear explanation of such observations.
The deviation of the saturation value of ṽ from unity is given in terms

of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞkms

fs

r
. Apart from the lack of synchrony a, it is controlled

by the spring constant km, step-size s, and the stall force fs.
The identification and estimation of the self-load, and the

determination of its impact on filament velocity is the second
main result of this paper.

4 Discussion

In this paper, we developed an active bath picture to describe
the collective impact of motor proteins (MP) on a conjugate
filament. This provides an effective Langevin dynamics with
active mean force and force fluctuation that can be described as
an active Ornstein–Uhlenbeck process. We derived the expres-
sion of the mean force using a mean-field analysis. Approx-
imate analytic expressions of the force fluctuation amplitude
and the force correlation time are also obtained. As we have
shown, the force fluctuations are essentially governed by the
fluctuations of MP extension in the attached state.

Solving the effective Langevin equation describing the
motion of filament under MP drive, we found the asymptotic
diffusivity and mobility of the filament. This led to an effective
temperature that grew and saturated with the MP number. The
stall force and MP step size entirely determine the saturation.
Within a local thermal equilibrium approximation, the effective
temperature also describes the fluctuation of MP extension.
Using this, we estimated the relative fluctuations of MP exten-
sions which would have vanished if the individual extensions
were in perfect synchrony. In the absence of that, an effective
self-load emerges. We obtained an approximate expression of
this self-load that describes well why the filament velocity
under the drive of a large number of MPs saturates to a value
smaller than that of a free MP.

The main assumptions involved in the approximate analytic
calculations are (i) the active force on the filament is due to
attached MPs extending until reaching the stall condition. Thus
the mean active force is obtained by using the stall condition
h :yi = 0. (ii) The active force fluctuations are essentially deter-
mined by MP extensions. (iii) An equilibrium-like effective
temperature is obtained from the ratio of diffusivity and mobi-
lity. This is used in a local thermal equilibrium argument to
determine self-load expression. At attachment, the MPs do not
extend, and as a result attachment process can produce slight
force fluctuation. In contrast, extended MPs can cause signifi-
cant force fluctuation at the detachment. This effect could not
be incorporated in our approximate analytic expression for force
correlation. This led to a smaller estimate of force fluctuation
with respect to numerical observations.

The parameter values used in our numerical simulations
correspond to the microtubule-kinesin systems. Thus our quan-
titative predictions are amenable to direct experimental measure-
ments in such systems. However, the scheme presented here is
generic and is equally applicable to other MP-filament systems,

e.g., actin filament-myosins.46,91,92 Developing an effective active
bath picture for the filament motion in MP assay is also relevant
to the recent interest in tracer dynamics in active baths.93,94 As
has been shown before, in experiments, the number of MPs can
be precisely controlled,24,25 thus allowing for testing the MP-
number dependences predicted in our study. For example, in ref.
50 kinesin surface density was varied between 90 � 40 mm�2 and
1600 � 580 mm�2. This range of surface density corresponds to a
line density range of MPs from 9.5 � 6.3 mm�1 to 40 � 24 mm�1.
The line density of MPs used in such experiments can be varied
in the range of 3 mm�195 to 120 mm�1.96 Note that we varied the
line density in our numerical study between 0.5 to 50 mm�1. The
amount of self-load generated in experiments can be determined
from the knowledge of the unloaded self-propulsion of MPs.

Moreover, our method can be utilized in coarse-grained
theoretical studies of semiflexible bio-polymers in gliding
assays.65,66 The active bath mapping developed here can sim-
plify numerical calculations by removing the requirement of
simulating all the MPs and treating the filament as locally
active driven by colored noise whose properties are determined
by the MPs. This can allow a more detailed investigation of the
impact of MP activity on bio-polymer assemblies.
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Appendices

A Derivation of mean field equations

Defining the arithmetic mean of the individual MP extensions

as y ¼ ð1=naÞ
Pna
i

yi one obtains the evolution of the mean

number of attached MPs as42

h :nai = (N � hnai)oa � hnaodekmy/fdi (29)

where h. . .i denotes statistical averaging over stochastic pro-
cesses. Within mean-field approximation, in the above equa-
tion, we first replace hnaekmy/fdi = hnaihekmy/fdi. By Jensen’s
inequality, hekmy/fdi Z ekmhyi/fd. Thus the real relaxation of hnai
is faster than that assumed in eqn (5).

Using eqn (3) within the linear regime of force-velocity,
one gets the second equation in eqn (5). Further, setting the

external force Fe = 0, writing hFmi ¼ �km
Pna
i¼1

yi
� �

¼ �hnaikmhyi

within the mean-field approximation in eqn (2), one obtains the
third equation in eqn (5).

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
9 

Fe
br

ua
ry

 2
02

3.
 D

ow
nl

oa
de

d 
by

 I
ns

tit
ut

e 
of

 P
hy

si
cs

, B
hu

ba
ne

sh
w

ar
 o

n 
2/

28
/2

02
4 

5:
54

:1
9 

A
M

. 
View Article Online

https://doi.org/10.1039/d2sm01183b


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 1834–1843 |  1841

B Processivity and extension

From numerical simulations using parameter values listed in
Table 1 we calculate the steady-state mean number of attached
MPs %na. It grows linearly with the total number of MPs N with a
slope O giving the processivity in the absence of external load
(Fig. 6(a)). In Fig. 6(b) we plot the mean extension of MPs that
decreases with N showing excellent agreement with the predic-
tion in eqn (10). Further, in Fig. 6(c) we show the simulation
results for the mean-squared extension of MPs and compare
them with the approximate estimate hy2i = Teff/km presented in
Section 3.3.

C Correlation functions

In the attempt to obtain a closed-form expression for force correla-

tion, we focussed on the fluctuation of yðtÞ ¼ 1

naðtÞ
PnaðtÞ
i¼1

yiðtÞ for a

fixed hnai. The expression in eqn (17) captures the correlation time
and qualitative features of the strength of fluctuations C̃ as
shown in Fig. 2. The expression of hy(t)y(t0)i in eqn (16) shows
semi-quantitative agreement with simulation results (Fig. 7(a)).
In Fig. 7(b) we plot the auto-correlation of number of
attached MPs.

The attachment–detachment can be considered a random
Telegraph process with rates oa and o0, where o0 = odhekmy/fdi
is calculated from the direct numerical measurements of
hnai = NPs

a, where the steady-state probability of attached
fraction Ps

a = oa/(oa + o0). The variance is given by

dna2 ¼ hna2i � hnai2 ¼
oao0

ðoa þ o0Þ2
N. The Telegraph process pre-

dicts a steady-state correlation81

hna(t)na(t0)i = hnai2 + dna
2e�|t�t0|/tad (30)

where tad = 1/(oa + o0). The simulation results in Fig. 7(b) show
excellent agreement with the analytical prediction in eqn (30).
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