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ABSTRACT

The melting of a homopolymer double-stranded (ds) deoxyribonucleic acid (DNA) in the dilute limit is studied numerically in the presence
of an attractive and impenetrable surface on a simple cubic lattice. The two strands of the DNA are modeled using two self-avoiding walks,
capable of interacting at complementary sites, thereby mimicking the base pairing. The impenetrable surface is modeled by restricting the
DNA configurations at the z � 0 plane, with attractive interactions for monomers at z¼ 0. Further, we consider two variants for z¼ 0 occu-
pations by ds segments, where one or two surface interactions are counted. This consideration has significant consequences, to the extent of
changing the stability of the bound phase in the adsorbed state. Interestingly, adsorption changes from critical to first-order with a modified
exponent on coinciding with the melting transition. For simulations, we use the pruned and enriched Rosenbluth algorithm.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151155

I. INTRODUCTION

The denaturation of the double-stranded (ds) deoxyribonucleic
acid (DNA) from a bound (ds) to an unbound single-stranded (ss)
phase is an important step toward fundamental biological processes,
such as DNA replication, ribonucleic acid (RNA) transcription, packag-
ing of DNA, and repairing.1 In vitro, the melting transition is induced
by changing the temperature or pH of the DNA solution. However, the
physiological condition would allow neither extremes of temperature
nor pH level inside the cell. Therefore, the cell has to rely on other ambi-
ent factors to locally modify the stability of the ds structure of the DNA.
Among others, one of the crucial factors and a potential candidate that
can alter the stability of the native DNA form is an interaction of the
DNA with a surface, e.g., in the form of proteins or cell membranes.
The DNA strands being polymers, can undergo an adsorption transi-
tion, where the two strands, either in the ds or ss phase, get adsorbed on
a surface.2 In vivo, the protein-induced DNA-membrane complex is
used during the replication process, cell division, and for inducing local
bends in the rigid duplex DNA.3,4 Again, adsorption is instrumental in
packaging DNA inside the virus heads.5,6 On the technological front,
the adsorbing property of the DNA is often used to target drug delivery
in gene therapy,7,8 and for manufacturing biosensors with quick and
accurate detection of DNA in bodily samples. In all these instances, the
surface–DNA interaction can be tuned by changing the nature of the
surface. This tunability calls for a detailed phase mapping arising from
the interaction of the DNAwith the adsorbing surface.

The melting and the adsorption transition individually form the
subject of many theoretical and experimental studies in the past.
However, studies investigating the melting-adsorption interplay
remain relatively less explored. Naively, one would expect four distinct
phases when melting and adsorption are considered together.4

However, the unbound-adsorbed phase was found missing in a theo-
retical study,9 which employs an exactly solvable model of flexible,
ideal chains. Overall, in Ref. 9, it was found that the bound state is sta-
bilized in the presence of an adsorbing surface. By contrast, on the
experimental side, Ref. 10 had demonstrated that directly adsorbed
DNA hybrids are significantly less stable than if free. Therefore, further
study of the melting-adsorption interplay employing more versatile
models is essential for a complete understanding.

Numerically, lattice models have been helpful in extracting sensi-
ble results on par with the experiments, e.g., the melting transition was
shown to be first-order when excluded volume interactions are fully
included.11 In contrast, the polymer adsorption transition was shown
to be continuous.2,12 It is, therefore, instructive to include excluded
volume interaction while constructing a model for DNA melting.
With this in mind, in this paper, we explore the interplay between the
melting and the adsorption transitions of a model homopolymer
DNA, using a lattice adaptation of the Poland–Scheraga model on a
simple cubic lattice where self-avoidance can be duly implemented
among the intra- and inter-strand segments.11

Further, we consider two model variants depending on how the
ds segments interact with the surface. We found that the melting vs
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adsorption phase diagram is drastically different for the two different
interaction schemes between the ds and the adsorbing surface. In one
of the models, the two transitions coalesce into a single transition for
specific values of the coupling potentials, thereby promoting the con-
tinuous adsorption transition to first-order. However, the first-order
nature of the melting transition remains unaffected in both cases even
when there is a change in the dimensionality.

The remaining paper is organized in the following manner. In
Sec. II, we introduce the DNA-surface interaction model and its two
variants. In Sec. III, we describe the simulation algorithm required to
generate the equilibrium configurations over an adsorbing surface. In
Sec. IV, we qualitatively describe the problem along with the thermo-
dynamic observables required to study the problem. Next, we discuss
the findings of model I in Sec. VA and model II in Sec. VB. Finally,
we conclude the paper in Sec. VI.

II. THE MODEL

We model the DNA strands (say A and B) as two self-avoiding
walks (SAWs), represented by the vectors rAi and rBj (1 � i; j � N).
The strands are also mutually avoiding, with the exception that they
are capable of forming a base pair (bp) among the complementary
monomers (i¼ j) from the two strands while occupying the same lat-
tice site (rAi ¼ rBi ). One end of the DNA is grafted in the z¼ 0 plane.
The other end is free to wander in the z � 0 direction, with the z¼ 0
plane impenetrable and attractive. An energy �ebp is associated with
each bound bp independent of the bp index (homopolymer) and is
represented by the reduced variable g ¼ ebp=kBT , where T is the tem-
perature, and kB is the Boltzmann constant. For each interaction with
the z¼ 0 surface, there is an energetic gain of �es, represented by the
reduced variable q ¼ es=kBT . Further, we consider two variants:
model I and model II. The difference in the two variants is in the
strength of the ds interaction with the surface (es�ds); in model I, we
consider only one unit of interaction (es�ds ¼ es), while in model II,
we consider two units of interaction (es�ds ¼ 2es), each for one of the
strands. The rationale behind such speculation is that when interacting
sidewise, like in Fig. 1(a), there would be an effective interaction of one
strand. By contrast, when both the strands touch the plane simulta-
neously, each strand would contribute [Fig. 1(b)]. These two scenarios
may arise depending on the hardness of the surface. While metallic
surfaces (such as gold) used during experiments are hard, biological

surfaces tend to be much softer. For ss segments, however, we
always consider only one unit of surface interaction (es-ss ¼ es). A typ-
ical configuration from our simulation is shown in Fig. 1(c). The
Hamiltonian for a typical configuration according to model II can be
written as

bH ¼ �g
XN
i¼1

drAi ;rBi � q
XN
i¼1

X
a¼A;B

d0;za
i
; (1)

where b ¼ 1=ðkBTÞ, and di;j is the Kronecker delta. We set the
Boltzmann constant kB¼ 1 throughout our study.

The two variants discussed above only represent the two exclu-
sive scenarios. However, in reality, we might have something in-
between where both of the above pictures hold simultaneously at
different places along the DNA. Again, the adsorbing surface can gen-
erally be of complex geometry with varying degree of roughness and
curvature. However, we choose a smooth and impenetrable flat surface
for simplicity. Other than that, for simplicity, and due to limitations of
the considered model, we neglect some aspects of the DNA, such as its
heterogeneous sequence, the difference in rigidity of the ss and ds seg-
ments, and helical geometry. We aim to consider some of these in our
future work. The above-described DNA model, despite being mini-
malistic, has been successfully used to predict the first-order nature of
the melting transition,11 change of DNA rigidity around the melting
transition,13 the unzipping and stretching transitions,14 and a non-
monotonic change of the melting temperature in a poor solvent
background.15

III. SIMULATION METHODS

We use the pruned and enriched Rosenbluth method (PERM)16

to simulate the equilibrium configurations of the dsDNA over an
attractive surface. Two strands are grown at once, adding monomers
on top of both strands’ last added monomer at once. At each step, we
calculate the joint possibilities of stepping into free sites obtained by a
Cartesian product of the individual sets of possibilities, i.e.,
S n ¼ S nðAÞ �S nðBÞ. Each element in S n corresponds to an
ordered pair of new steps for both the strands and carries a Boltzmann
weight of exp ðg � l þ q�mÞ, where l¼ 1 for a bp, and 0 otherwise,
while m¼ 0, 1, or 2 depending upon the number of surface contacts
and model. Then, a choice is made from the S n set of possibilities
according to the importance sampling. At each step, the local partition
function is calculated as wn ¼

P
S n

exp ðg � l þ q�mÞ. The parti-
tion sum at length n17 is then estimated by product over the local par-
tition sums at each step, Wn ¼

Qn
i¼1 wi, and averaging over the

number of started tours we obtain Zn ¼ hWni. Enrichment and prun-
ing at nth step are performed depending on the ratio, r ¼Wn=Zn, and
using the scheme,

r ¼
1; continue to grow;
<1; prune with probability ð1� rÞ;
>1; make k� copies:

8<
: (2)

If r< 1 and pruning fails, the configuration is continued to grow
but with Wn¼Zn. For enrichment (r> 1), k is chosen as,
k ¼ minðbrc;N ðS nÞÞ, where N ðS nÞ is the cardinality of the set
S n, and each copy carries a weight Wn

k . A depth-first approach is
employed for creating the copies, where the configuration of a single
copy is dealt with at a time, and recursion is used to start the different

FIG. 1. Schematic diagram for (a) lateral view of model I and (b) planar view of
model II. In (a) representing model I, only one strand is effectively interacting with
the surface in the bound state. Both the strands are simultaneously in contact with
the surface in model II as in (b). (c) A typical configuration showing strand A (S1)
and strand B (S2) with the adsorbing plane at z¼ 0.
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copies from the same enrichment point. Averages are taken over 108

tours.
To estimate averages of thermodynamic observables (say Qn) at

length n, the averaging is performed on the fly using the expression
given as follows:

hQniðg; qÞ ¼
hQnWnðg; qÞi

Znðg; qÞ
; (3)

where the h� � �i in the numerator represents the ensemble average of
the quantity over the number of started tours, using the local estimate
of the configuration weightWn.

One of the important aspects in simulating lattice self-avoiding
walks is in checking if the immediate next sites are empty. The
straightforward way is to check if any of the last N – 1 steps occupy
the site. However, for walks of length N, the time required in this oper-
ation grows as OðNÞ, and OðN2Þ for the total chain. This can be
avoided using the bit map method in which the whole lattice is stored
in an array using a hashing scheme, where each site is given an array
address like f ðx; y; zÞ ¼ x þ yLþ zL2 þ offset, where L is an odd
number, representing the dimension of the virtual lattice box and
offset ¼ bLd=2c is a constant number that depends upon L to make
the address start from zero. Here, the checking of self-avoidance is
�Oð1Þ, with no possibility of hashing collision. However, since our
problem requires constraining the polymer above the plane on which
it is grafted, there is a significant chance that the polymer will move
out of the simulation box. A lower bound on the linear box dimension
demands that L� 2N�2d , where the factor 2 considers the chain starts
growing from the center of the plane, and �2d is the SAW size expo-
nent in two dimensions. The amount of required memory increases
rapidly with L.

A possible way out is to use a linked list method, e.g., the Adelson-
Velsky–Landis (AVL) binary search tree.18 The AVL algorithm creates
a tree-like structure where each node represents an occupied lattice site.
Each entry for a new step is associated with search, insertion, and reba-
lancing the tree branches. Each insertion or deletion operation requires
Oðlog ðnÞÞ time, where n is the total number of nodes that translates to
the number of monomers or occupied sites or the polymer length. For
a chain of lengthNþ 1, the total growth time (assuming only insertion
is performed) is ln ð1Þ þ ln ð2Þ; � � � ; ln ðNÞ ¼ ln ðN!Þ. Using Sterling
approximation, and for large N, this is approximately OðN lnNÞ.
Moreover, the AVL algorithm can be easily incorporated into the
recursive structure of the PERM algorithm.

IV. QUALITATIVE DESCRIPTION AND
THERMODYNAMIC OBSERVABLES

Before describing the findings of our study, let us briefly discuss a
few of the results known so far, along with the thermodynamic quanti-
ties we would be interested in. The melting of the dsDNA with
excluded volume interaction is a first-order transition.11 The bound
and unbound phases are dominated by energy and entropy, respec-
tively, depending upon whichever minimizes the free energy. The
average number of bound bps per unit length (nc=N) serves as the
order parameter with nc=N ¼ 1 and 0 in the bound and unbound
phase, respectively. The fluctuation in nc is denoted by Cc ¼ hn2c i
�hnci2, and the associated crossover exponent as /m. For the first-
order melting transition /m ¼ 1, and /m < 1 for continuous melting
transition. For this specific model, in the absence of any adsorbing

surface (i.e., q¼ 0), the melting takes place at g	 ¼ 1:3413 with the
crossover exponent /m ¼ 0:94, which is close to one, as expected for a
first-order transition.11 On the other hand, the 3d to 2d adsorption of
a lattice polymer on a two-dimensional surface is a continuous transi-
tion with the critical point at qc ¼ 0:2856.12 Here, the average number
of surface contacts per unit length ns=N is the order parameter, and its
fluctuation is denoted by Cs. The corresponding critical exponent con-
trolling the growth of surface contacts at the critical point is /a. The
exponent /a is expected to be universal, with a value of /a ¼ 1=2 from
mean-field calculations at the critical point. However, from computer
simulations, the most recent improved estimate of the critical exponent
suggests /a ¼ 0:48ð4Þ.12,19 Interestingly, one can visualize the natura-
tion of a dsDNA as selective adsorption of one of the strands on the
other, with the surface being one-dimensional and fluctuating. Then, if
we reduce the fluctuation by pulling the strands, preferably in the same
direction, the melting transition indeed becomes continuous.14

Often, systems undergoing multiple transitions (i.e., described by
multiple order parameters) may result in a m�elange of critical exponents
obtained from different methods, such as the finite-size-scaling analysis,
scaling of the specific heat peaks with the system size, and the reunion
exponent also known as the bubble-size-exponent for DNA, among
others. Therefore, deciding the behavior of the transition becomes diffi-
cult. In these situations, to corroborate any change in the nature of the
transition, the general prescription is to look at the probability distribu-
tion of the associated order parameter close to the transition point. For
adsorption transition, we look at the probability distribution ðPnsÞ of the
surface contacts (ns) at different lengths, close to the transition point
(qc). To calculate Pnsðq; gÞ, we find the conditional partition sum
Zn;nsðq; gÞ, where n is the length of the DNA having ns number of sur-
face contacts. Finally, Pns is found using the following formula:

Pnsðq; gÞ ¼
Zn;nsðq; gÞ

X2n
ns¼0

Zn;nsðq; gÞ
; (4)

where the maximum number of surface contacts is always double the
number of possible bps (n), which happens for the unbound configu-
ration. For a continuous transition, the order parameter distribution is
expected to hold a scaling relation of the form

Pns 
 N�/pðns=N/Þ; (5)

where / is the associated scaling exponent. It is worthwhile to note
that Eq. (5) is also true for the first-order melting transition in our
DNAmodel.11

For q < qc, the partition sum of a SAW scales as

Zðq;NÞ 
 lNNc1�1; (6)

where the subscript 1 in the entropic exponent c1 denotes the fact that
one end is grafted on an impenetrable surface, while the exponential
growth through l (the effective coordination number) is invariant.
Near the adsorption transition (q 
 qc), Z(q, N) should scale as

Zðq;NÞ 
 lNNc01�1w ðq� qcÞN/a
� �

; (7)

where wðxÞ is a scaling function. Taking derivative of lnZðq;NÞ in
Eq. (7) with respect to q, and setting q¼ qc, one obtains the scaling
form of the mean adsorbed energy at the critical point as
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ns 
 N/a : (8)

Therefore, at the critical adsorption point, the quantity ns=N/a

should be N independent for appropriate /a in the thermodynamic
limit N !1. We will use this quantity to estimate the critical point
for adsorption, where for continuous adsorption transitions, we use
/a ¼ 1=2.

Further, following Ref. 12, we also looked at the quantity

c01;eff ¼ 1þ ln Zðq; 2NÞ=Zðq;N=2Þ=l3N=2
� �

ln 4
; (9)

using l ¼ 4:684 038 6. We simulate chains of length up toN¼ 10 000,
to extract data up to N¼ 5000 using Eqs. (8) and (9).

For melting, we estimated the transition points from the aver-
age number of bound bps (nc) and its fluctuation ðCcÞ. The melting
points are obtained from the scaling of nc and Cc, following the
equations

nc 
 N/m f ðg � g	ÞN/m
� �

(10)

and

Cc 
 N2/mh ðg � g	ÞN/m
� �

: (11)

Tuning g	 and /m to the appropriate values in Eqs. (10) and (11)
would make the data for different lengths fall upon each other result-
ing in data collapse.

Finally, apart from Eq. (8), we also use the crossing point of the
Cs curves of the two longest lengths to locate the critical point for the
continuous adsorption transitions. However, for the first-order
adsorption, the method of data collapse is used using Eqs. (10) and
(11) but with q in the place of g, and, nc and Cc replaced with ns and
Cs, respectively. Moreover, we can have an idea about the nature of the
transition and the transition point beforehand from the shape of the
Cs curves.

V. RESULTS AND DISCUSSION
A. Model I

We plot the melting vs adsorption phase diagram for model I in
Fig. 2. For reference to the pure cases, the two individual transitions,
g	 ¼ 1:3413 for the first-order melting and qc ¼ 0:2856 for the con-
tinuous adsorption transition, are plotted using the dotted lines.
However, when both are present, as we change the parameters, these
two lines cross at a multicritical point somewhere around g � 1:34
and q � 0:265, thereby dividing the phase plane into four equilibrium
phases, viz., bound-desorbed (BD), unbound-desorbed (UD),
unbound-adsorbed (UA), and the bound-adsorbed (BA) phase. These
new mixed phases emerge as a result of coupling between the melting
and adsorption transitions, e.g., region a in Fig. 2 corresponds to an
unbound phase that otherwise should have been bound.

As the two lines (g	 ¼ 1:3413 and qc ¼ 0:2856) intersect each
other, the bound state is primarily stabilized for increasing q, which is
somewhat surprising (see Fig. 2 inset). Also, the critical adsorption line
slightly deviates from the pure value around the junction. The
increased stability of the bound state persists for a small range of q val-
ues ð0:26ð6Þ� q� 0:4Þ. It is because, in this region, the bound and
unbound phases in the vicinity of the melting line are unequally placed
in their corresponding adsorbed phases. The ds phase placed relatively

deeper into the adsorbed phase is entropically stabilized, owing to the
loss in entropy of the adsorbed ds segments. This short period of sta-
bility is followed by a monotonic increase in the threshold g	 required
to achieve a bound state for q> 0.4, separating the destabilized bound
and unbound state in the adsorbed phase. We found a linear depen-
dence of g	 on q, and fitting the relation g	ðqÞ ¼ aqþ b gives a slope
of a¼ 0.731. We can understand this monotonic increase using the
energy-entropy argument; since the number of independent surface
contacts increases upon unbinding, with each ds bp resulting in two
new possible ss surface contacts, along with an increase in the entropy,
theUA phase is strongly favored over the BA phase. A significant con-
sequence is that the melting in the adsorbed phase (BA! UA) is dif-
ferent from the pure melting in two dimensions (2d) where the
melting point is at g	2d ¼ 0:752ð3Þ. The disparity is a result of the ener-
getic advantage of theUA phase over the BA phase.

Noticeably, while undergoing UA to BA transition by varying q,
the system shows first-order like fluctuation of surface contacts (Cs), with
the average number of surface contacts ðnsÞ reducing to half its value
than that in the UA phase. This observation is supported by the scaling
plot of the surface contact probability distribution (Pns ) at a point g

	 ¼
1:5 and q¼ 0.659 above the melting phase boundary, using the scaling
exponent /a ¼ 1 and Eq. (5) [Fig. 3(a)]. Notice the lower peak corre-
sponding to BA phase at ns=2N 
 0:5. However, it is not a genuine
desorption transition. It is because for model I the ds and ss surface con-
tacts are treated on equal footing with equal energetic contribution.

For higher g values, the BA phase undergoes continuous desorp-
tion around limg!1 qc ¼ 0:2856. In Fig. 3(b), we plot the scaled form
of the average surface contacts ns and its fluctuation Cs in Fig. 3(b)
inset for g¼ 5, using the values qc ¼ 0:285ð5Þ and /a ¼ 1=2 for data
collapse. In the limit g !1, the critical point for adsorption

FIG. 2. Model I phase diagram for melting “melt” and adsorption “ads.” The dotted
lines represent the transition points for the individual cases; for melting
g	 ¼ 1:3413, and qc ¼ 0:2856 for adsorption. (Inset) A scale up of the part of the
phase diagram showing a decrease in the threshold g	 for bound state. The error
bars in qc and g	 are of the size of the plotting points.
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converges to the pure adsorption value since in the completely bound
phase (nc=N ¼ 1), the adsorption energy per unit length remains the
same as that of the unbound case for this model variant.

Summarizing the results of model I, we see that the bound phase
is stabilized only for a small range of q values (Fig. 2 inset). Otherwise,
the bound state remains destabilized. For q < 0:265ð5Þ, the two tran-
sitions remain decoupled without affecting each other, while threshold
g	 changes rapidly for q> 0.4, with a linear dependence on q.
However, the adsorption line has no substantial change except for a
small deviation near the crossing point.

The results involving model I are in accordance with Ref. 10,
where adsorbed DNA hybrids are found to be less stable than their
free counterpart. Importantly, these results suggest that since the
destabilization of the dsDNA is essential for the ease of opening up a
bound segment, adsorption could play a crucial role in initiating cer-
tain biological processes related to the transfer of genetic information.

B. Model II

For model II, we consider ds bound segments to have a higher
energy gain (precisely, double) than ss segments upon interaction with
the surface. Using this scheme of interaction, the phase plane is
divided into four distinct phases, viz., BD, UD, UA, and the BA phase
(Fig. 4). We can further identify three types of melting transition using
these four phases: (i) when both the phases are desorbed, (ii) when the
bound phase is adsorbed, and the unbound phase is desorbed, and (iii)
when both the phases are adsorbed. While in the phases correspond-
ing to the melting type (i) and (iii), the two transitions remain sepa-
rated, for melting type (ii), both the transitions coincide into one
transition, represented by an overlapping phase boundary for a con-
siderable range of g and q values, thereby giving rise to a multicritical
line (Fig. 4). Intriguingly, the adsorption transition is promoted to
first-order in this overlapping region [Fig. 5(a)].

Adjacent to this overlapping region, and bounded by the lines
g	 ¼ 1:3413 and qc ¼ 0:2856 on the other two sides, is a small trian-
gular island (denoted by a) that exhibits qualities akin to the
Borromean phase found in nuclear systems.9,20 The specialty of this a
phase is that it is not possible when either of the coupling potentials is
turned off and exists as a result of the combined effect of the two, even
though neither g nor q is strong enough to support an ordered state,
individually. This small window of q and g values corresponding to
the coinciding phase line facilitates achieving an adsorbed and a bound

FIG. 3. (a) Model I scaling plot of the probability distribution ðPns Þ of surface con-
tacts (ns) on the BA ! UA transition line corresponding to the points g	 ¼ 1:5
and q¼ 0.659, using /a ¼ 1. Data shown for chain lengths N¼ 700–1000. (b)
Scaling plot of the average number of surface contacts ðnsÞ, and (inset) its fluctua-
tion ðCsÞ for g¼ 5, using qc ¼ 0:2855 and /a ¼ 1=2 for data collapse of chain
lengths N¼ 2000–5000.

FIG. 4. Model II phase diagram. Dotted lines represent g	 ¼ 1:3413 and
qc ¼ 0:2856. Dashed lines represent g	2d ¼ 0:752ð3Þ and qc ¼ 0:1428. Region a
corresponds to the Borromean phase.9
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(BA) phase by changing only g or q, with the other parameter fixed.
Such points (or region) can be crucial for real biological systems since
it reduces a multi-parameter system to be controlled by a single
parameter. Adsorption in this region follows a similar scaling expo-
nent as of the first-order melting transition. In Fig. 5(a), the scaling
plots are shown for the average number of surface contacts (ns), and
the scaling of the fluctuation peaks Cs;max in Fig. 5(a) inset, for
g¼ 1.25, using qc ¼ 0:278ð4Þ and /a ¼ 0:9660:02 for data collapse.

This is our strongest evidence to support a first-order adsorption. A
similar inter-change of the transition order was previously observed in
a theoretical model studying the interplay of helix-coil and adsorption
transition in a polymer by Carri and Muthukumar in Ref. 5. The first-
order-like adsorption, however, increases the fraction of surface con-
tacts only to ns=N 
 1 [see Fig. 5(a)], whereas the other half increases
(with increasing q) in a way similar to the continuous transition, but,
that is far away from the transition point.

That there is a change in the nature of the adsorption transition
is also evident from the probability distribution of the surface contacts
ðPnsÞ close to the transition point, e.g., at g	 ¼ 1:25 and q¼ 0.2782 in
Fig. 5(b). Pns as found in Fig. 5(b) is in stark contrast with the critical
distribution found for the continuous case even at chain lengths
N¼ 1000. Usually, a first-order transition is characterized by a doubly
peaked distribution with a growing depth of the valley in-between,
and the gap between the peaks converges to a constant. This valley
results from of a d – 1 dimensional interface separating the coexisting
phases in the d dimensional system and incurs an energy penalty while
going between the phases. This surface energy, in turn, suppresses the
states in between the peaks. It grows exponentially deep in the thermo-
dynamic limit P 
 exp ð�rLd�1Þ, where L is the system size, and r is
related to the surface tension. However, for certain models where the
interface separating the phases can be reduced to a point, the valley is
absent, and the interfacial free energy is no longer extensive in N, e.g.,
in our DNA model, the interface between a bound and an unbound
segment is a point, in adsorption a point separates the adsorbed and
desorbed phases, or the point interface separating the collapsed ferro-
magnetic phase from the coiled-paramagnetic phase in the case of a
magnetic polymer.21 This describes the shape of the distribution in
Fig. 5(b). However, we need further simulations with longer lengths
and better statistics to rule out any possibility of singular buildups on
either arm.

The melting transition, on the other hand, remains unaffected.
To substantiate, we looked at the scaling of the average bp contacts nc
in Fig. 7(a), and the corresponding scaling of the fluctuation
peak Cc;max with N in Fig. 7(a) inset. The obtained exponent /m
¼ 0:9860:01 from the scaling plots is consistent with the previous
value for a first-order melting.11 Note that, here, the melting is induced
by altering the surface interaction for a fixed g.

Below phase a, qc for an adsorbed phase increases for a small
range of g values. The presence of another transition makes it hard to
determine qc from the Cs curves only. Therefore, the qc values near the
confluence point are obtained using Eqs. (8) and (9) for chain lengths
up to N¼ 5000. While Eq. (8) shows a slight increase in qc [Fig. 6(a)],
Eq. (9) do not detect any change [Fig. 6(b)]. However, since our model
has added complexities, e.g., two complementary monomers from dif-
ferent strands can occupy the same lattice site to form a bp which
might affect l (except for completely bound or unbound state), we
believe Eq. (8) to give a more reliable estimate of qc.

For sufficiently high q values when the system is completely
adsorbed (ns=2N ¼ 1), the melting transition from BA to UA phase is
two-dimensional. Since, post-melting, the entropy gain is smaller in
the adsorbed phase (two dimensions), compared to the unbound state
in the desorbed phase (three dimensions), the bound state in the
adsorbed phase is more stable than that in the desorbed phase, leading
to a gradual lowering in the threshold g, which eventually converges to
limq!1 g	 ¼ g	2d , where g	2d ¼ 0:752ð3Þ is the two-dimensional

FIG. 5. (a) Model II scaling plot of the average number of surface contacts ns
according to Eq. (8), for g¼ 1.25, using /a ¼ 0:9660:02 and qc ¼ 0:2784
60:0002. [(a) inset] Scaling of the fluctuation peaks Cs;max with N. PðxÞ

 x1:00960:01 is a fit to the data points resulting in /a ¼ 1. (b) Scaled probability
distribution of the surface contacts ðPns Þ at g¼ 1.25 and q¼ 0.2782, using /a
¼ 1 (arrow ar1 in Fig. 4). Data shown for chain lengths N ¼ 700–1000.
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melting point. The bp contact fluctuation scaling plot for melting
when q¼ 7 is shown in Fig. 7(b). The melting transition remains first-
order in 2d.

A similar argument also applies to the adsorption transition for
which the critical adsorption strength qc decreases and converges to
limg!1 qc ¼ 0:1428. It is exactly half the qc value of the pure problem
and can be obtained considering that, for model II, even though the
actual contour length is halved in the bound state (nc=N ¼ 1), the
energy in the adsorbed phase remains the same. Therefore, the effec-
tive adsorbed energy per unit length is doubled, making it easier to get

adsorbed. However, the transition is continuous, similar to the pure
case. For example, we estimated the critical adsorption point for g¼ 5
to be qc ¼ 0:1431ð5Þ.

Unlike model I, the bound state in model II is stabilized in the
presence of the adsorbing surface. Although our results from model II
are in line with Ref. 9, qualitatively, we obtain all four possible phases,
instead of three, as in Ref. 9, where the UA phase was absent.
Biologically, adsorption-induced stability could be essential to guard
DNA native form against thermal fluctuation and external forces.
Importantly, adsorption can energetically compensate for the bending

FIG. 7. (a) Model II scaling plot of the average number of bp contacts nc, for
g¼ 1.25, using /m ¼ 0:9860:01 and qc ¼ 0:278ð4Þ for data collapse. [(a) inset]
Scaling of the nc fluctuation peaks Cc;max with N. PðxÞ 
 x0:9660:009 is a fit to the
data points resulting in /m ¼ 0:9860:004. (b) Scaling plot of the bps fluctuation
(Cc) for melting in two dimensions for q¼ 7, using g	 ¼ 0:752ð6Þ and
/m ¼ 0:96ð3Þ, for chain lengths N¼ 500–2000.

FIG. 6. Model II plots of (a) average surface contacts scaled by the factor N/a and
(b) showing c01;eff from Eq. (9) for different q values. Both plots are for g¼ 1.17 and
using the scaling exponent /a ¼ 1=2.
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of the rigid ds segments, thereby providing an alternative to bubble-
mediated bending.

VI. CONCLUSION

To conclude, in this paper, we elucidate the role of adsorption
in modifying the melting transition and vice versa. Two separate
models were considered, which differ in the strength of the interac-
tion with the surface along the ds segments. Such a consideration
arises from the speculation that the orientation of the DNA, in
conjunction with the nature of the adsorbing surface, could play an
important role in determining which of the studied model effec-
tively applies.

The two models show significant differences: model I shows that
the ds structure is mostly destabilized in the presence of an attractive
surface, with a small region near the crossing point of the phase lines
showing a stable DNA. In contrast to model II, there is no extended
region where the phase lines overlap. The findings from this model
resemble the result from the experiment performed with DNA hybrids
in Ref. 10.

On the other hand, model II shows that the ds structure of the
DNA is only stabilized in the presence of an attractive surface with no
regions of instability. Although this model is similar to the theoretical
model of Ref. 9, there are significant improvements, such as we con-
sider excluded volume interaction. Moreover, we found the presence
of all four possible phases, which is not the case in Ref. 9. Here, we
found the presence of an extended region of coinciding phase lines,
not present in model I, where adsorption is first-order, and the scaling
exponent is similar to that of the melting transition. However, whether
this denotes a non-universality in the adsorption transition is yet to be
understood.

In general, the surface interaction strength for the ds segments
could be es�ds ¼ aes�ss, where the factor a � 1. Here, we have studied
the two extreme cases a¼ 1 and 2. It will be interesting to see how the
two phase diagrams interpolate between models I and II as we contin-
uously vary a from 1 to 2, especially if an a exists for which the melting
curve remains unaffected by the attractive surface.

Findings from both models carry biological significance. Our
work contributes toward completing the picture by connecting the
experimental and theoretical findings, with new results not present in
the previous studies.
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