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We propose a three-step periodic drive protocol to engineer two-dimensional (2D) Floquet quadrupole super-
conductors and three-dimensional (3D) Floquet octupole superconductors hosting zero-dimensional Majorana
corner modes (MCMs), based on unconventional d-wave superconductivity. Remarkably, the driven system
conceives four phases with only zero MCMs, no MCMs, only anomalous π MCMs, and both regular zero and
anomalous π MCMs. To circumvent the subtle issue of characterizing zero and π MCMs separately, we employ
the periodized evolution operator to architect the dynamical invariants, namely quadrupole and octupole motion
in 2D and 3D, respectively, that can distinguish different higher-order topological phases unambiguously. Our
study paves the way for the realization of dynamical quadrupolar and octupolar topological superconductors.
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I. INTRODUCTION

Topological superconductors (TSCs) hosting Majorana
zero modes (MZMs) have been the cornerstone for the last
two decades due to their potential application in topological
quantum computations utilizing non-Abelian statistics [1–4].
The quest for TSC emerges following the elegant proposal by
Kitaev [1], and the idea by Fu and Kane [5] that emphasized
the realization of MZMs on the two-dimensional (2D) sur-
face of a three-dimensional (3D) topological insulator (TI),
in proximity to an s-wave superconductor and magnetic insu-
lator. Very recently, the advent of generalized bulk boundary
correspondence (BBC) in the higher-order topological (HOT)
phase [6–19] has made the field more exciting. An nth-order
HOT insulator [superconductor (HOTSC)] phase is charac-
terized by the existence of electronic (Majorana) boundary
modes at their (d − n)-dimensional boundaries (0 < n � d)
[20–46].

To this end, we focus on the periodically driven quan-
tum systems, exhibiting nontrivial properties compared to
their static counterparts such as dynamical localization
[47–49], many-body localization [50–52], Floquet time crys-
tals [53,54], higher harmonic generation [55,56], etc. In
particular, anomalous boundary modes at finite quasienergy,
namely π modes, with concurrent regular zero modes, can
be engineered by Floquet driving [57]. Moreover, one can
architect the Floquet HOT insulators (FHOTIs) [58–76] and
Floquet HOT superconductors (FHOTSCs) [77–82] out of
nontopological or lower-order topological systems.

To date, there exist a very few proposals, based on a
steplike protocol, to realize the FHOTI phase hosting both
zero and anomalous π modes [64,65,72,74]. The dynamical
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FHOTI modes in 2D are characterized by redefining the polar-
ization for driven systems, where the mirror symmetry plays a
pivotal role [64]. The hunt for such FHOTSC phases is still
in its infancy [82], along with their dynamical topological
characterizations. Hence, we seek the answers to the follow-
ing intriguing questions: (1) Is it possible to systematically
generate the FHOTSC hosting both zero and the anomalous π -
Majorana modes in 2D and 3D? (2) How can we characterize
these zero and π modes using a proper dynamical topological
invariant?

In this paper, we employ a periodic step-drive protocol to
systematically formulate a 2D quadrupolar Floquet second-
order TSC (FSOTSC) and a 3D octupolar Floquet third-order
TSC (FTOTSC), based on an unconventional d-wave super-
conductor. This driving protocol allows us to realize and
characterize both the zero and π Majorana corner modes
(MCMs), and serves as the primary motivation of the current
work. We extensively study the dynamical octupolar motion in
3D, which adds significant merit to the problem we are dealing
with.

The remainder of the paper is organized as follows. We
discuss the generation of anomalous Majorana modes in
Sec. II. We topologically characterize the 2D FSOTSC and 3D
FTOTSC phase using a dynamical quadrupole moment and
dynamical octupole moment, respectively, in Sec. III. Finally,
we summarize and conclude our paper in Sec. IV.

II. GENERATION OF ANOMALOUS MAJORANA MODES

Considering the d-wave superconductor, we prescribe the
following three-step drive protocol to foster the 2D FSOTSC
and 3D FTOTSC:

HdD(k, t ) = J ′
1h1,dD(k), t ∈ [0, T/4],

= J ′
2h2,dD(k), t ∈ (T/4, 3T/4],

= J ′
1h3,dD(k), t ∈ (3T/4, T ]. (1)
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Here, J ′
i hi,dD(k) denotes the Hamiltonian of the system at

the ith step in d dimensions (dD), while J ′
1 and J ′

2 carry
the dimensions of energy. We define the dimensionless
parameters (J1, J2) = (J ′

1T, J ′
2T ), where T (� = 2π/T )

represents the time period (frequency) of the drive. We
set h̄ = c = 1. In particular, to generate a 2D FSOTSC,
we choose h1,2D(k) = h3,2D(k) = τzσz and h2,2D(k) =
ε2D(k)τzσz + �2D(k) + �2D(k), whereas in 3D we consider
h1,3D(k) = h3,3D(k) = τzσz and h2,3D(k) = ε3D(k)τzσz +
�3D(k) + �3D(k) with ε2D(k) = (cos kx + cos ky), �2D(k) =
sin kxτzσxsz + sin kyτzσy, �2D(k) = �(cos kx − cos ky)τx,
ε3D(k) = (cos kx + cos ky + cos kz ), �3D(k) = sin kxτzσxsx +
sin kyτzσxsy + sin kzτzσxsz, and �3D(k) = �1(cos kx −
cos ky)τx + �2(2 cos kz − cos kx − cos ky)τy. Here, εdD(k)
and �dD(k) encapsulate all the hoppings and spin-orbit
coupling terms in dD, respectively. In 2D, we use the dx2−y2

pairing, given by �2D(k) [23,81], while in 3D we incorporate
mixed pairing dx2−y2 + id3z2−r2 , represented by �3D(k)
[46,83]. In the first and last step of the drive, the Hamiltonian
contains only an on-site term [h1,dD(k)], providing us further
analytical sophistication and facilitating the topological
characterizations [57,64]. Here, both h1,dD(k) and h2,dD(k)
respect the antiunitary particle-hole, unitary chiral, and mirror
symmetry while the last one plays the decisive role.

The Floquet operator U (k, T ), following the time-ordered
(TO) notation, is given as [84]

UdD(k, T ) = TO exp

[
−i

∫ T

0
dt HdD(k, t )

]
. (2)

Using the eigenvalue equation for UdD(k, T ),
UdD(k, T ) |	〉 = exp[−iE (k)] |	〉, we obtain

E (k) = ± arccos {cos [αdD(k)J1/2] cos [βdD(k)J2/2]

− sin [αdD(k)J1/2] sin [βdD(k)J2/2]χdD(k)}, (3)

where αdD(k)=|h1,dD(k)|=|h3,dD(k)|, βdD(k)=|h2,dD(k)|,
and χdD(k) = εdD(k)

αdD(k)βdD(k) . We invoke the band-gap closing
across E (k) = 0,±π at (kx, ky) = (0, 0) or (π, π ) for 2D and
at (kx, ky, kz ) = (0, 0, 0) or (π, π, π ) for 3D to acquire the
generalized topological phase boundary akin to our driving
protocol in d dimensions as [74]

d|J2|
2

= |J1|
2

+ nπ, (4)

where n ∈ Z. We show the topological phase diagram in the
J1-J2 plane for 2D (3D) in Fig. 1(a) [Fig. 2(a)]. The phase
diagram can be divided into four segments: region 1 (R1) with
only zero modes, region 2 (R2) without any modes, region 3
supporting only π modes, and region 4 (R4) allowing both
zero and π MCMs to coexist.

Having perceived the problem analytically, we anchor
our findings with numerical results. The 2D FSOTSC and
3D FTOTSC can be identified by the presence of zero-
dimensional (0D) MCMs [45]; these are computed for both
regular and anomalous modes while diagonalizing the Floquet
operator [Eq. (2)] with an open boundary condition (OBC)
in all directions. The corresponding local density of states
(LDOS) of MCMs is shown in Figs. 1(b) and 2(b), respec-
tively, for a 2D square and 3D cubic lattice. We portray the

FIG. 1. (a) We depict the phase diagram of 2D FSOTSC in the
J1-J2 plane [Eq. (4)]. (b) The LDOS is demonstrated for a 2D square
lattice of dimension Lx × Ly for Em = 0, ±π . The quasienergy spec-
tra Em, computed from Eq. (2), are shown as a function of the state
index m in (c)–(f) for R1–R4, respectively. We use the parameters
as (J1, 2J2) = [( π

4 , π

2 ), ( π

2 , π

4 ), ( 3π

4 , π

2 ), ( π

2 , 3π

4 )] for R1–R4, respec-
tively. We choose � = 1.0 throughout our numerical analysis.

quasienergy spectra (Em) for R1 (eight zero MCMs), R2 (no
MCMs), R3 (four MCMs each at Em = ±π ), and R4 (eight
MCMs at Em = 0 and four MCMs each at Em = ±π ) in
Figs. 1(c)–1(f) [Figs. 2(c)–2(f)], respectively, considering a
2D (3D) system. Note that in 3D, both the surface and the
hinge mode become gapped. The generation of these anoma-
lous dynamical MCMs via our three-step driving protocol is
one of the main results of this paper.

III. TOPOLOGICAL CHARACTERIZATION
OF FHOTSC PHASE

For the anomalous Floquet phase, the main challenge is
to topologically characterize both the zero and π MCMs
distinctively. We first pursue the appropriate Wannier sector
polarization for 2D FSOTSC and 3D FTOTSC, employing
nested Wilson loop techniques [7,18,84], from the Floquet

FIG. 2. We repeat the outcome of Fig. 1 considering a 3D cubic
lattice of dimension Lx × Ly × Lz following Eq. (2). We set �1 =
�2 = 1.0 in the above calculation. The value of the other parameters
is chosen to be the same as mentioned in Fig. 1.

155406-2



DYNAMICAL CONSTRUCTION OF QUADRUPOLAR AND … PHYSICAL REVIEW B 105, 155406 (2022)

operator UdD(k, T ). For 2D FSOTSC (3D FTOTSC), the av-
erage first-order (second-order) nested Wannier polarization

for the μ′-th (μ′′-th) sector 〈ν±νx
y,Flq,μ′ 〉 (〈ν±ν±νx

y

z,Flq,μ′′ 〉) [84] exhibits
a quantized value of 0.5, when the system is in the regime
R1 and R3. However, the same is unable to ascertain one
whether the modes are lying at the zero or π gap. These nested
polarizations reduce to zero for both the trivial phase in R2
and the anomalous phase hosting both zero and π modes in
R4.

The inadequacy of the topological invariant, computed
from the quasistatic Floquet operator, motivates us to hunt
for a dynamical topological invariant (both in 2D and 3D)
that cannot only extricate R2 from R4 but also unmistakably
yield distinct signatures of zero and π modes. We consider the
full time evolution operator UdD(k, t ), embodying an anoma-
lous periodized part UdD,ε (k, t ) and a normal quasistatic part
[U (k, T )]t/T

ε , such that [57,64]

UdD(k, t ) = UdD,ε (k, t )[UdD(k, T )]t/T
ε , (5)

where the subscript ε denotes the zero and π gap and
enables us to keep track of the origin of the MCMs in
these quasienergies. We use the periodized evolution operator
(PEO) UdD,ε (k, t ) = UdD(k, t )[UdD(k, T )]−t/T

ε to calculate
the pertinent topological invariant. However, unlike UdD(k, T )
the PEO does not possess any conventional band physics and
can be gapless at certain time instants [57,64].

In order to capture the nontriviality of the anomalous Flo-
quet modes, we define the dynamical mean polarization as the
relative motion of a particle at two instants [64,84]

ˆ̄x(t ) = [x̂(t ) + x̂(0)]

2
, (6)

where x̂(0) = x̂ = ∑
im ĉ†

im |0〉 e−i�xxi 〈0| ĉim exemplifies
the static polarization [85] with �i = 2π/Li, x̂(t ) =
U †

dD,ε
(k, t )x̂ UdD,ε (k, t ), and ĉ’s being the quasiparticle

creation operators. The eigenvalue of ˆ̄x(t ) is related to the
dynamical Wilson loop operator Wx,ε,k(t ) in the following
way: [ ˆ̄x(t )]Lx = ∑

kmn ĉ†
km |0〉 [Wx,ε,k(t )]mn 〈0| ĉkn. One can

find Wx,ε,k(t ) = Qx,ε,k+(Lx−1)�xex (t ) · · · Qx,ε,k+�xex (t )Qx,ε,k(t )

with Qp,ε,k(t ) = I+U †
dD,ε

(k+�pep,t )UdD,ε (k,t )
2 , and the unit vector

along the pth direction is represented by ep. From the
eigenvalue equation for Wx,ε,k(t ), Wx,ε,k(t ) |νx,ε,μ(k, t )〉 =
e−2π iνx,ε,μ (k j �=x,t ) |νx,ε,μ(k, t )〉, one obtains the dynamical
first-order branches νx,ε,μ(k j �=x, t ). Here, νx,ε,μ(k j �=x, t ) refers
to a relative motion of a particle along the x direction with
respect to xi during t ∈ [0, t] [64]. These dynamical first-order
branches can characterize the anomalous Floquet first-order
topological phase. In order to conceive the higher-order
moments, one needs to incorporate the nested structure while
constructing the Wilson loop, as executed for the static
systems with appropriate Qp,k [7].

To accommodate the FHOTSC phase, the eigenvalues
νx,ε,μ(k j �=x, t ) remain gapped during the full cycle t ∈ [0, T ]
and can be grouped into two separable sets ±νx,ε . The
dynamical second-order polarization is computed by
evaluating the relative motion of a particle along the y
direction by projecting onto the set ±νx,ε with projector
P±νx,ε (t ) [84]: ˆ̄y±νx,ε (t ) = P±νx,ε (t ) ˆ̄y(t )P±νx,ε (t ). Similar to the
earlier case, we can obtain a dynamical first-order nested

FIG. 3. The gapped dynamical polarization branches νx,ε=0,μ and
νx,ε=π,μ, arising from zero and π gaps, are respectively shown as
a function of ky in (a) and (b), at time t = T

2 , while the system is
in R4. The average quadrupolar motions 〈ν+νx,ε

y,ε,μ′ 〉(t ) for R1–R4 (see
Fig. 1) are depicted in (c)–(f), respectively, as a function of time
t , manifesting gapless crossing between opposite branches. Here,
blue and red dots represent 〈ν+νx,ε

y,ε,μ′ 〉(t ) arising from zero and π gaps,
respectively. See text for discussion.

Wilson loop operator W ±νx,ε

y,ε,k (t ) from ˆ̄y±νx,ε (t ), [ ˆ̄y±νx,ε (t )]Ly =∑
k,μ1,μ2∈±νx,ε

γ
†
kεμ1

(t ) |0〉 [W ±νx,ε

y,ε,k (t )]μ1μ2 〈0| γkεμ2 (t ),
where γ ’s are constituted from |νx,ε,μ(k, t )〉 ac-
cording to the projection rule [84]. This leads to
W ±νx,ε

y,ε,k (t ) = Q±νx,ε

y,ε,k+(Ly−1)�yey
(t ) · · · Q±νx,ε

y,ε,k+�yey
(t )Q±νx,ε

y,ε,k (t )

with [Q±νx,ε

y,ε,k (t )]μ1μ2 = ∑
mn[νx,ε,μ1 (k + �yey, t )]∗m

[Qy,ε,k(t )]mn[νx,ε,μ2 (k, t )]n. The dynamical second-order
quadrupolar branches ν

±νx,ε

y,ε,μ′ (k j �=y, t ) can be obtained

from the eigenvalue equation W ±νx,ε

y,ε,k (t ) |ν±νx,ε

y,ε,μ′ (k, t )〉 =
e−2π iν

±νx,ε
y,ε,μ′ (k j �=y,t ) |ν±νx,ε

y,ε,μ′ (k, t )〉. These quadrupolar branches
can topologically characterize the anomalous 2D FSOTSC,
which we illustrate in Fig. 3.

Proceeding further, the octupolar phase guarantees
gapped quadrupolar branches during time t ∈ [0, T ] and
thus can be grouped into two dissociable sets ±ν

±νx,ε
y,ε .

The dynamical third-order polarization can be portrayed
as the relative motion of a particle along the remaining
z direction using the projector P±ν

±νx,ε
y,ε

(t ) onto ±ν
±νx,ε
y,ε :

ˆ̄z±ν
±νx,ε
y,ε (t ) = P±ν

±νx,ε
y,ε

(t )ˆ̄z(t )P±ν
±νx,ε
y,ε

(t ) [84]. Following a
similar line of argument, the dynamical second-order
nested Wilson loop operator is found to be [ˆ̄z±ν

±νx,ε
y,ε (t )]Lz =∑

k,μ′
1,μ

′
2∈±ν

±νx,ε
y,ε

η
†
kεμ′

1
(t ) |0〉 [W ±ν

±νx,ε
y,ε

z,ε,k (t )]μ′
1μ

′
2
〈0| ηkεμ′

2
(t ),

where η’s are comprised from |νx,ε,μ(k, t )〉 and

|ν±νx,ε

y,ε,μ′ (k, t )〉 [84]. We therefore obtain W
±ν

±νx,ε
y,ε

z,ε,k (t ) =
Q

±ν
±νx,ε
y,ε

z,ε,k+(Lz−1)�zez
(t ) · · · Q

±ν
±νx,ε
y,ε

z,ε,k+�zez
(t )Q±ν

±νx,ε
y,ε

z,ε,k (t ), with

[Q±ν
±νx,ε
y,ε

z,ε,k (t )]μ′
1μ

′
2
= ∑

mnμ1μ2
[ν±νx,ε

y,ε,μ′
1
(k + �zez, t )]∗μ1

[νx,ε,μ1 (k + �zez, t )]∗m[Qz,ε,k(t )]mn[νx,ε,μ2 (k, t )]n

[ν±νx,ε

y,ε,μ′
2
(k, t )]μ2 . From the eigenvalue of W

±ν
±νx,ε
y,ε

z,ε,k (t ), we
procure the dynamical third-order octupolar branch as
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FIG. 4. We repeat Figs. 3(a) and 3(b) for the 3D cubic lattice
as a function of kz, kx and depict them in (a) and (b), respec-
tively. The gapped dynamical quadrupolar branches ν

+νx,ε
y,ε=0,μ′ and

ν
+νx,ε
y,ε=π,μ′ are shown in (c) and (d), respectively, at t = T

2 in R4. The

average octupolar motions 〈ν+ν
+νx,ε
y,ε

z,ε,μ′′ 〉(t ) for R1–R4 are shown in (c)–
(f), respectively, indicating the gapless crossing between opposite

branches. Here, blue and red dots represent 〈ν+ν
+νx,ε
y,ε

z,ε,μ′′ 〉(t ) arising from
zero and π gaps, respectively and are discussed in the text.

ν
±ν

±νx,ε
y,ε

z,ε,μ′′ (k j �=z, t ) that is adopted to topologically characterize
the 3D FTOTSC as demonstrated in Fig. 4.

A. Dynamical quadrupole moment

Limited to 2D, the mirror symmetry Mx enforces
νx,ε,μ(ky, t ) to appear in pairs: νx,ε,μ1 (ky, t ) = −νx,ε,μ2 (ky, t ),
with μ1 ∈ +νx,ε,μ and μ2 ∈ −νx,ε,μ. Moreover, My compels
νx,ε,μ(ky, t ) = νx,ε,μ(−ky, t ) within each branch μ [64]. We
show these behaviors in Figs. 3(a) and 3(b) for zero and
π gaps at t = T

2 , respectively, when the system is in R4.
Mx imposes the quadrupolar branches, derived from oppo-
site first-order branches, to be the same, i.e., ν

+νx,ε

y,ε,μ′ (kx, t ) =
ν

−νx,ε

y,ε,μ′ (kx, t ), and My causes the quadrupolar branches to ap-

pear in pairs: ν
+νx,ε

y,ε,μ′
1
(kx, t ) = −ν

+νx,ε

y,ε,μ′
2
(kx, t ) [64]. It is evident

from the above discussion that the mirror symmetries do not
impose any constraints on the quantization of the quadrupolar
branches at any time instant t , unlike the static case where ν’s
are allowed to take values of either zero or 1/2 (mod 1) [7].

The average quadrupolar motion 〈ν+νx,ε

y,ε,μ′ 〉(t ) =
1
Lx

∑
kx

ν
+νx,ε

y,ε,μ′ (kx, t ), however, plays a paramount role
in understanding the topological Floquet modes. Now,
U2D,ε (0) = U2D,ε (T ) = I necessitates the particles to undergo
a round trip during the time interval t ∈ [0, T ] and enforces
〈ν+νx,ε

y,ε,μ′ 〉(t = 0) = 〈ν+νx,ε

y,ε,μ′ 〉(t = T ) = 0 (mod 1) to be the

fixed points. For a topologically trivial phase, 〈ν+νx,ε

y,ε,μ′ 〉(0)

and 〈ν+νx,ε

y,ε,μ′ 〉(T ) are adiabatically connected without any gap
closing between two branches ∀t ∈ [0, T ] [see Fig. 3(c)
for π gap, Fig. 3(d) for both gaps, and Fig. 3(e) for zero
gap]. The presence of MCMs (see Fig. 1) in the gap ε,
obstructs the motion of 〈ν+νx,ε

y,ε,μ′ 〉(t ) in the time interval

t ∈ [0, T ] and two branches cross each other at 1
2 (mod 1)

at t = T
2 [see Fig. 3(c) for zero gap, Fig. 3(e) for π gap,

and Fig. 3(f) for both zero and π gaps). We thus obtain
the quantization of the dynamical quadrupole moment
Q+νx,ε

ε = ∫ T
0 dt∂t 〈ν+νx,ε

y,ε,μ′ 〉(t ) = (0) 1 (mod 1), for the (trivial)

topological case, giving rise to a Z2 classification. Thus, the
generalization of the dynamical quadrupole moment for the
2D FSOTSC (with an eight-band model) is another important
result of this paper.

B. Dynamical octupole moment

In 3D, Mx seeks νx,ε,μ1 (ky, kz, t ) = −νx,ε,μ2 (ky, kz, t ),
with μ1 ∈ +νx,ε,μ and μ2 ∈ −νx,ε,μ, while My and Mz

set the shape of the branch such that νx,ε,μ(ky, kz, t ) =
νx,ε,μ(−ky, kz, t ) and νx,ε,μ(ky, kz, t ) = νx,ε,μ(ky,−kz, t )
within each branch μ. We demonstrate the dynamical
first-order branch in Figs. 4(a) and 4(b) while the system
is in R4 at t = T

2 for the zero and π gaps, respectively.
Here, Mx invokes second-order branches calculated from
opposite first-order branches ±νx,ε,μ(ky, kz, t ) to be identical,
My requires ν

+νx,ε

y,ε,μ′
1
(kz, kx, t ) = −ν

+νx,ε

y,ε,μ′
2
(kz, kx, t ), and Mz

enforces ν
+νx,ε

y,ε,μ′ (kz, kx, t ) = ν
+νx,ε

y,ε,μ′ (−kz, kx, t ). We depict the
dynamical second-order branch in Figs. 4(c) and 4(d) for
zero and π gaps, respectively, at t = T

2 , while the system
is in R4. Akin to the first-order branches, the quadrupolar
branches also exhibit a finite gap and set the stage for the
calculation of the third-order (octupolar) dynamical branch.
Here, Mx and My ensure the octupolar branch calculated
from different quadrupolar branches to remain the same
and Mz compels the octupolar branch to appear in pairs:

ν
+ν

+νx,ε
y,ε

z,ε,μ′′
1

(kx, ky, t ) = −ν
+ν

+νx,ε
y,ε

z,ε,μ′′
2

(kx, ky, t ).
Following the 2D case, we introduce the average octupolar

motion as 〈ν+ν
+νx,ε
y,ε

z,ε,μ′′ 〉(t ) = 1
LxLy

∑
kxky

ν
+ν

+νx,ε
y,ε

z,ε,μ′′ (kx, ky, t ). For the

trivial case, 〈ν+ν
+νx,ε
y,ε

z,ε,μ′′ 〉(t : 0 → T ) winds back to the original
value (mod 1) without experiencing any gap closing among
the branches [see Fig. 4(e) for π gap, Fig. 4(f) both zero
and π gaps, and Fig. 4(g) for zero gap]. The topologically
nontrivial situation refers to a gap closing of two different oc-

tupolar branches at 1
2 (mod 1) when 〈ν+ν

+νx,ε
y,ε

z,ε,μ′′ 〉(t → 0) = 0 (1)

evolves to 〈ν+ν
+νx,ε
y,ε

z,ε,μ′′ 〉(t → T ) = 1 (0) as depicted in Fig. 4(e)
for zero gap, Fig. 4(g) for π gap, and Fig. 4(h) for both zero
and π gaps. Hence, the notion of a Z2 invariant works for
the 3D octupole moment similar to the 2D quadrupolar mo-

ment: O
+ν

+νx,ε
y,ε

ε = ∫ T
0 dt∂t 〈ν+ν

+νx,ε
y,ε

z,ε,μ′′ 〉(t ) = (0) 1 (mod 1), for the
(trivial) topological case. We emphasize that the topological
characterization of anomalous MCMs (0 − π ) via the dynam-
ical octupole moment in the FTOTSC phase is the prime result
of this paper.

IV. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we prescribe a step-drive pro-
tocol to dynamically construct 2D FSOTSC and 3D FTOTSC
hosting 0D MCMs. Exploiting the phase diagrams, we il-
lustrate the emergence of both regular zero and anomalous
π MCMs separately and simultaneously. We circumvent the
elusive affair of complete topological characterization for
available dynamical phases by analyzing PEO in both 2D
and 3D. This allows us to tie up the dynamical quadrupole
and octupole moments with Z2 classifications and enables
us to topologically characterize the FHOTSC phases. Along
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this direction, the stability of these dynamic phases in the
presence of strong disorder might also be an intriguing future
direction.

Note that the Majorana-based qubit architectures have
been studied for FSOTSC, hosting both zero and anomalous
π modes, in the context of fault-tolerant quantum comput-
ing [78]. We believe that the spatially separated MCMs in
FTOTSC, observed for the present case, can become po-
tentially useful for further extensions of the quantum gate
operations in 3D. The three-step periodic driving protocol
implemented here is found to be very convenient for the
model-based studies [64]. Given the experimental advance-
ment in Floquet driving [86–88] and HOT phases [89–91],

our proposal carries possible implications of practical rele-
vance [92]. However, from the experimental viewpoint, the
engineering of HOT phases employing laser drive/light fields
can be more realistic, which we leave for future investigations
and will be presented elsewhere. We believe that the present
scheme of topological characterization would work for con-
tinuous time driving.
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