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Engineering anomalous Floquet Majorana modes and their time evolution in a helical Shiba chain
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We theoretically explore the Floquet generation of Majorana end modes (MEMs; both regular 0 modes
and anomalous π modes) implementing a periodic sinusoidal modulation in the chemical potential in an
experimentally feasible setup based on a one-dimensional chain of magnetic impurity atoms having spin spiral
configuration (out-of-plane Néel type) fabricated on the surface of a common bulk s-wave superconductor.
We obtain a rich phase diagram in the parameter space, highlighting the possibility of generating multiple
0- and π -MEMs localized at the end of the chain. We also study the real-time evolution of these emergent
MEMs, especially when they start to appear in the time domain. These MEMs are topologically characterized
by employing the dynamical winding number. We observe that the existing perturbative analysis is unable to
explain the numerical findings, indicating the complex mechanism behind the formation of the Floquet Shiba
minigap, which is characteristically distinct from other setups, e.g., the Rashba nanowire model. We also discuss
the possible experimental parameters in connection to our model. Our work paves the way to realize Floquet
MEMs in a magnet-superconductor heterostructure.
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Introduction. Majorana zero modes (MZMs) associated
with topological superconductors (TSCs) [1–7] have been at-
tracting massive attention due to their non-Abelian braiding
property, which is proposed to be the elementary build-
ing block for fault-tolerant topological quantum computation
[8–12]. The idea of MZMs was first proposed by Kitaev
through the model of a one-dimensional (1D) spinless p-wave
superconductor [1,2]. However, this model is not experi-
mentally feasible due to the unavailability of a 1D p-wave
superconductor in nature. Nevertheless, there exists an al-
ternate realistic proposal to engineer 1D Kitaev-like physics
in 1D semiconducting nanowire (NW) with strong spin-orbit
coupling (SOC), placed in close proximity to a bulk s-wave
superconductor in the presence of a Zeeman field [4,5,7,13–
16]. A Majorana zero-bias peak, observed in several transport
experiments based on hybrid superconductor-semiconductor
NW setups, has been interpreted as the indirect signature of
the MZMs [15–20].

In recent times, the hunt for MZMs has taken an alternative
route based on the helical spin chain [21–33] or magnetic
adatoms fabricated on the surface of a bulk s-wave supercon-
ductor [34–41]. Physically, the scattering between magnetic
impurities and the quasiparticles in the superconductor fosters
the formation of Yu-Shiba-Rusinov (YSR) states [42–46] in-
side the superconducting gap. These YSR states can hybridize

*debashish.m@iopb.res.in
†arnob@iopb.res.in
‡tanay.nag@physics.uu.se
§arijit@iopb.res.in

among themselves and form YSR or Shiba bands. The heli-
cal spin texture and strength of the magnetic impurities play
the combined role of SOC and magnetic field, respectively
[26,33]. A few experimental proposals based on scanning
tunneling microscopy (STM) measurements have also been
reported to realize the MZMs associated with the minigap of
YSR bands [47–55].

On the other hand, Floquet generation is a sophisticated
and versatile way to engineer on-demand topological phases
out of a nontopological system [56–75]. The absorption and
emission of photons from the driving field lead to the for-
mation of Floquet quasienergy sidebands. These overlapping
sidebands trigger the band-gap opening and band inversion
resulting in the appearance of Floquet topological modes. The
dynamical setup also facilitates the generation of the anoma-
lous topological boundary modes at finite energy, namely, π

modes, having no static counterpart. In this exciting direc-
tion of Floquet band engineering, the emergence of Floquet
Majorana end modes (MEMs) has been explored in 1D
p-wave Kitaev chains [67–69], 1D cold-atomic-NW–s-wave-
superconductor heterostructures [70,72–74], and also, very
recently, in a realistic 1D Rashba NW model [76]. The braid-
ing of these Floquet boundary modes further adds merit to
these systems due to their applicability in quantum compu-
tations [77–80]. Notwithstanding this, the Floquet generation
of MEMs in a realistic helical spin chain model along with
their topological characterization is yet to be explored. At this
stage, we would like to pursue the answers to the following
intriguing questions: (a) Is it possible to generate and topo-
logically characterize Floquet MEMs employing a realistic
model based on a helical-Shiba-chain–s-wave-superconductor
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FIG. 1. Schematic representation of our setup. A 1D chain of
magnetic adatoms with their spins (red arrows) confined in the xz
plane (out-of-plane Néel-type spin spiral configuration) is placed on
top of a bulk s-wave superconductor (green).

(magnet-superconductor) heterostructure while starting from
a trivial phase? (b) How do these dynamical MEMs within the
emergent quasienergy Shiba band evolve with time?

In this Research Letter, we first briefly discuss the un-
derlying static model based on a helical 1D magnetic spin
chain proximitized with a common bulk s-wave superconduc-
tor [21] (see Fig. 1). We explore the generation of Floquet
MEMs (both 0 modes and anomalous π modes) employing
an external periodic sinusoidal drive in this setup (see Fig. 2).
Afterward, we demonstrate the real-time evolution of the Flo-
quet MEMs (see Fig. 3). We compute the dynamical winding
number utilizing the periodized evolution operator to charac-
terize the topological nature of the Floquet MEMs as shown
in Fig. 4. We find that the numerically obtained quasienergy
spectrum cannot be described by the analytical perturbative
analysis where the superconducting part is only renormal-
ized without affecting the normal part in the Bogoliubov–de

Gennes (BdG) Hamiltonian (see Fig. 5). We also provide
some probable experimental parameters concerning our sys-
tem of interest.

Static model. We consider the model of a helical spin chain,
based on a 1D chain of magnetic impurity atoms mimicking
an out-of-plane Néel-type spin spiral (SS) configuration [46]
that is fabricated on the surface of a bulk s-wave superconduc-
tor [21] (see Fig. 1 for a schematic). We employ the following
BdG basis: � j = {c j↑, c j↓, c†

j↓,−c†
j↑}t, where c†

j↑ (c j↑) and

c†
j↓ (c j↓) represent the quasiparticle creation (annihilation)

operators for the spin-up and spin-down sectors, respectively,
at lattice site j and t indicates the transpose operation. Exploit-
ing the BdG basis, we can write an effective 1D Hamiltonian
in real space for our system as

H =
∑

j

�
†
j [−μ�1 + B cos( jθ )�2 + B sin( jθ )�3 + ��4]� j

+
∑

j

�
†
j,ηth�1� j+1 + H.c., (1)

where μ, B, θ , �, and th represent the chemical potential, the
magnetic impurity strength, the angle between two adjacent
spins, the superconducting pairing gap, and the hopping am-
plitude, respectively. Also, �1 = τzσ0, �2 = τ0σz, �3 = τ0σx,
and �4 = τxσ0, while the Pauli matrices τ and σ act on the
particle-hole and spin (↑, ↓) subspaces, respectively. Here,
we assume that all the impurity spins as classical such that
they are well separated from each other and do not interact
among themselves. The Hamiltonian H [Eq. (1)] preserves
chiral symmetry S = IN ⊗ τyσy, S−1HS = −H , and particle-
hole symmetry (PHS) C = IN ⊗ τyσyK, C−1HC = −H , with
N and K representing the number of impurity atoms and
the complex-conjugation operation, respectively. However, H
breaks the time-reversal symmetry (TRS) T = IN ⊗ iτ0σyK:
T −1HT �= H .

Floquet generation of MEMs. We employ a periodic si-
nusoidal drive in the on-site chemical potential to generate
the Floquet TSC phase hosting MEMs. We choose the initial
static Hamiltonian [Eq. (1)] such that it resides in the trivial

FIG. 2. (a) and (b) The quasienergy spectra of the Floquet operator for B/� = 2 and B/� = 3, respectively. Floquet 0- and π -MEMs are
highlighted in the top-left and bottom-right insets, respectively. (c) The energy-resolved normalized LDOS computed at the end (blue curve)
and middle (green curve) of the chain for B/� = 2. The green peaks represent the emergent Shiba modes within the Floquet quasienergy
spectrum. Here, we consider a 1D chain of 600 lattice sites, and we choose the model parameters (μ/�, th/�, θ ) = (4, 1, 2π/3), 
/� = 1.5,
and V0/� = 5.
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phase to begin with. The driving protocol reads

V (t ) =
∑

j

�
†
j [V0 cos(
t )�1]� j, (2)

where V0 and 
 (= 2π/T ) represent the strength and fre-
quency of the drive, respectively, while T stands for the time
period of the external drive. The periodicity of the drive
V (t + T ) = V (t ) is ensured in the full time-dependent Hamil-
tonian H (t ) = H + V (t ) as H (t + T ) = H (t ). We work in the
real-time-domain picture, and the time-evolution operator in
terms of the time-ordered (TO) product reads as [81]

U (t, 0) = TO exp

[
−

∫ t

0
dt ′H (t ′)

]

=
M−1∏
j=0

U (t j + δt, t j ), (3)

where U (t j + δt, t j ) = e−iH (t j )δt , with δt = t/M, t j = jδt , and
M being the total number of Trotterization steps. The Floquet
operator U (T, 0) is the time-evolution operator computed at
t = T . Here, U (T, 0) serves the purpose of the dynamical
analog of the Hamiltonian. Thus we diagonalize U (T, 0) to
procure the quasienergy spectrum for our system. The cor-
responding quasienergy Em ∈ [−π, π ]. We demonstrate the
quasienergy spectrum as a function of the state index m in
Figs. 2(a) and 2(b) for different impurity strengths (B/� = 2
and B/� = 3, respectively, which indicate the nontopological
regime in the static model; see Supplemental Material (SM)
[82]). For B/� = 2, we obtain two MEMs (one mode per end)
at both quasienergy E = 0 and quasienergy E = π [see the
top-left and bottom-right insets, respectively, in Fig. 2(a)]. For
B/� = 3, we highlight the generation of multiple MEMs at
E = 0 [see the inset in Fig. 2(b)]. The generation of MEMs at
quasienergy π is unique to the Floquet systems only and does
not have any static analog, and this also serves as the prime
result of this Research Letter considering the Shiba chain
model. Apart from 0 energy, MEMs may also appear at finite
energy (±π ) in Floquet systems due to the presence of PHS
in the underlying BdG Hamiltonian. Thus the states having
quasienergy 0 and π ≡ −π can be their own antiparticle [70].
In Fig. 2(c), we depict the energy-resolved local density of
states (LDOS) computed at the end (blue curve) and middle
(green curve) of the chain. Note that the LDOS is normalized
by its maximum value throughout this Research Letter. The
peaks at E = 0,±π , denoted by the blue curve, indicate the
presence of Floquet MEMs when the LDOS is computed at
the end of the chain. On the other hand, the green curve in
Fig. 2(c) does not exhibit any peak at E = 0 or ±π ; peaks
in this curve indicate an emergent bulk Floquet quasienergy
Shiba band within the superconducting gap as the LDOS is
calculated at the middle of the chain. Thus the 0 and ±π

modes are truly boundary modes without having any weigh-
tage at the bulk. Moreover, the separation between the lowest
green peaks (close to 0 and ±π ) indicates the corresponding
dynamical topological gap.

Time evolution of the Floquet MEMs. The real-time de-
pendence of the driving protocol motivates us to pursue the
time evolution of the emergent Floquet MEMs [81]. To this
end, we diagonalize U (t, 0) and illustrate the instantaneous

FIG. 3. (a) The time-dependent eigenvalue spectra of the time-
evolution operator U (t, 0) as a function of time t . Both the 0 and
π modes appear and disappear with time during the time interval
t ∈ [0, T ]. We consider four time points: t = 0.28T with only 0
modes (time point 1), t = 0.63T with only π modes (time point
2), t = 0.9T with both 0 and π modes (time point 3), and t = T
with both 0 and π modes (time point 4). (b), (c), (d) and (e) denote
the time-dependent site resolved LDOSs for 0 and/or π modes
corresponding to time points 1, 2, 3 and 4, respectively. Clearly, at
t/T = 0.28 (t/T = 0.63) only 0 modes (π modes) are present, while
at t/T = 0.9 and t/T = 1 both the 0- and π -MEMs appear. Here, we
consider a 1D chain of 500 lattice sites, and all the model parameters
take the values as in Fig. 2.

eigenvalue spectra E (t ) as a function of time t in Fig. 3(a).
At t = 0, the system is a trivial superconductor. Afterwards,
we observe that both the 0- and π -MEMs continue to appear
and disappear in the Floquet TSC phase as a function of time t
before one reaches the full time period T ; this can be identified
distinctly from Fig. 3(a). To unveil the footprints of the MEMs
at different time instances, we consider four time slices: time
point 1 at t = 0.28T with only 0 modes, time point 2 at
t = 0.63T with only π modes, time point 3 at t = 0.9T with
both 0 and π modes, and time point 4 at t = T when both 0
and π modes present. The LDOSs associated with 0 and/or
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π modes corresponding to time points 1–4 are demonstrated
with respect to the length of the chain in Figs. 3(b)–3(e),
respectively. It is worth mentioning here that both the 0 modes
and the π modes are sharply localized at the two ends of the
1D chain.

Topological characterization of the dynamical MEMs.
The broken translational symmetry in H [Eq. (1)] rules out
the computation of the topological invariant in momentum
space. However, one can employ twisted boundary conditions
(TBCs) in a real-space geometry to topologically characterize
the system [76]. To this end, we connect the two ends of the
1D chain and embed a hypothetical flux η through it. The flux
induces a Peierls phase substitution to the hopping amplitude
as th → theiη j with j ∈ Z [76]. The Hamiltonian H [Eq. (1)]
and the time-evolution operator U (t, 0) [Eq. (3)] become an
explicit function of η such that H → H (η) and U (t, 0) →
U (η; t, 0). We enforce periodic boundary conditions (PBCs)
employing the constraint on η as Nη = 2π . Here, we note that
depending on the angle between two successive impurity spins
θ , the PBCs can be achieved only for a few specific values of
N (see SM [82] for details). To characterize the MEMs with
a distinct topological invariant, we also need to invoke the
periodized evolution operator, constructed employing TBCs,
defined as [65,82,93,94]

Uε (η; t, 0) = U (η; t, 0)[U (η; T, 0)]−t/T
ε . (4)

Here, ε stands for the 0 and π gap. Afterward, we exploit
the chiral symmetry operator to define a dynamical winding
number Wε to topologically characterize the MEMs appearing
at quasienergy ε [76,82], as

Wε =
∣∣∣∣ i

2π

∫ π

−π

dη Tr
[{U ±

ε (η; T/2, 0)}−1∂ηU ±
ε (η; T/2, 0)]

∣∣∣∣.
(5)

One can obtain U ±
0 (η; T/2, 0) [U ±

π (η; T/2, 0)] by writing the
periodized evolution operator employing the chiral basis (see
SM [82] for details). Here, Wε counts the number of Floquet
MEMs in the TSC phase residing at a particular quasienergy ε.

We depict the dynamical winding numbers W0 and Wπ in
the V0 − 
 plane in Figs. 4(a) and 4(b), respectively, while the
color bar represents the number of Floquet MEMs. In certain
parameter spaces, one can notice that the number of 0 and/or
π modes becomes more than 1. For better clarity, we also
illustrate W0 and Wπ as a function of 
 for three different
fixed values of V0 in Figs. 4(c), and 4(d), respectively. Thus
the appearance of multiple Floquet MEMs is also supported
by the outcome of the dynamical winding number. We further
show the bulk gap at quasienergies 0 (G0) and π (Gπ ) in the
V0 − 
 plane in Figs. 4(e) and 4(f), respectively. Each gap
closing in G0 and Gπ corresponds to a jump in W0 and Wπ ,
respectively, indicating a topological phase transition. This
one-to-one mapping between the dynamical winding number
Wε and the bulk gap Gε is evident from Fig. 4.

Perturbative analysis. Having investigated the problem
numerically, we employ two perturbative schemes, namely,
the Floquet perturbation theory (FPT) [81,95–97] and the
Brillouin-Wigner (BW) perturbation theory [98,99], to ex-
amine the high-amplitude driving V0 
 th and the high-
frequency driving 
 
 th, respectively. We find that the

FIG. 4. (a) and (b) The dynamical winding numbers W0 and Wπ ,
respectively, in the V0 − 
 plane. Here, Wε characterizes the Floquet
MEMs residing at the quasienergy gap ε. (c) and (d) W0 and Wπ , re-
spectively, as a function of 
 for three fixed values, V0/� = 5 (solid
blue curve), 8 (dashed red curve), and 10 (dotted green curve), for
better clarity. (e) and (f) The quasienergy gap around quasienergies
0 and π , respectively. We choose B/� = 5 (topological regime of
the static model), and the rest of the model parameters take the same
values as in Fig. 2.

superconducting term is renormalized in the leading order as

�eff
FPT = � J0( 2V0



) and �eff

BW = � (1 − V 2
0

2
2 ) for the FPT and
BW techniques, respectively, where J0(x) is the 0th Bessel
function of the first kind (see SM [82] for details). Notably,
the normal part of the BdG Hamiltonian remains unaffected
by such perturbations in the leading order.

We compute the quasienergy spectrum in the real space
for the effective Floquet Hamiltonian. In Fig. 5, we compare
the quasienergy spectra obtained from the FPT Hamiltonian
(blue dots), the BW Hamiltonian (red dots), and the exact Flo-
quet operator (green dots). We demonstrate the cases where
FPT and BW perturbation theory can successfully predict
the zero-energy modes for very few choices of parameters.
However, FPT and BW perturbation theory fail to anticipate
the zero-energy mode and the overall quasienergy profile for
most of the parameter space, even though the above theories
are applicable to those parameter choices. In Fig. 5(a), we
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FIG. 5. Comparison of the eigenvalue spectra Em as a function
of m, obtained from the FPT (blue dots), the BW perturbation theory
(red dots), and the exact Floquet operator (green dots). In (a), we
depict the eigenvalue spectra for (V0/�, 
/�) = (10, 3), while in
the inset we show the modes near quasienergy zero. We choose
(V0/�, 
/�) = (5, 10) for (b), while the zoomed-in spectra near
zero quasienergy are shown in the top-left inset. In the bottom-right
inset, we demonstrate the eigenvalue spectra for (V0/�, 
/�) =
(5, 6.5). We choose a 1D chain of 300 lattice sites, and the rest of
the model parameters are the same as in Fig. 2.

depict an instant where FPT matches with the exact numerics
to a certain extent; interestingly, the zero-energy modes are
successfully predicted. However, the BW perturbation theory
severely fails to mimic the exact spectrum [see the inset in
Fig. 5(a) for better clarity]. On the other hand, in Fig. 5(b),
FPT and BW perturbation theory exhibit similar spectra, while
the exact numerics is drastically different as FPT and BW
perturbation theory exhibit (exact numerics exhibits) a gapless
(gapped) feature around zero quasienergy [see the top-left
inset in Fig. 5(b) for better clarity]. However, as we lower
the drive amplitude and increase the drive frequency, FBT
and BW perturbation theory can sometimes mimic the zero
energy modes as noticed from the exact numerics [see the
bottom-right inset in Fig. 5(b)]. The match between theory
and numerics is not rigorous, but only accidental. Hence
neither the FPT nor the BW perturbation theory can sat-
isfactorily explain the emergence of MEMs in the driven
system.

The numerical findings apprehend that the drive and
magnetic impurity both simultaneously modify normal and
superconducting parts of the BdG Hamiltonian. Since the
above perturbation theories do not modify the normal part
of the BdG Hamiltonian, indicating that FPT and BW per-
turbation theory cannot capture the modulation of the Shiba
minigap in the presence of the time-periodic drive. Note
that the emergent Floquet Shiba minigap comprises both the
renormalized superconducting part and the normal part. More
precisely, the closed-form expression of the dynamical Shiba
gap is not tractable as the driving term, namely, the chem-
ical potential, is hidden inside the static Shiba bands in a
complex manner. Finding an appropriate theory to understand
the Floquet Shiba minigap in a driven helical spin chain is
far more complex than anticipated and beyond the scope of
this Research Letter. Interestingly, our numerical investigation

with the quasienergy spectrum indicates that the driven chain
starts hosting Floquet MEMs for substantially lower strengths
of magnetic impurity compared with the static case [82].

Plausible experimental realization. Having demonstrated
the generation of Floquet MEMs theoretically, here we dis-
cuss a possible way to realize our setup experimentally. The
most suitable superconducting candidate material may be bulk
Nb (110) since it has the highest possible superconducting
gap of � = 1.51 meV among the conventional superconduc-
tors [51]. Afterward, one may fabricate magnetic adatoms
such as Mn or Cr over the bulk Nb (110) employing STM-
based single-atom manipulation methods [49,50,54,100]. This
method could provide better tunability of the angle between
two impurity spins. Following our model, we consider the
scenario described in Fig. 2(a), and to this end, the other
model parameters can take the values th = � = 1.51 meV,
B = 2� = 3.02 meV, and μ = 4� = 6.04 meV. Moreover,
the periodic sinusoidal modulation of the on-site chemical
potential can be achieved through an ac gate voltage having
an amplitude V0 = 5� = 7.55 meV and frequency 
 ≈ 3.44
THz for the generation of Floquet 0- and π -MEMs.

Summary and conclusion. To summarize, in this Research
Letter, we demonstrate an experimentally feasible way to en-
gineer Floquet MEMs employing a helical spin chain model
(in the form of a Néel-type SS configuration fabricated on the
surface of an s-wave superconductor) and periodic modulation
of the chemical potential. We obtain a rich phase diagram
in the parameter space, allowing us to realize both Floquet
0-MEMs and Floquet π -MEMs in the emergent quasienergy
band. We also investigate the time evolution and tunability
of the number of Floquet MEMs. The 0- and π -MEMs are
always sharply localized at the two ends of the system. We
topologically characterize the MEMs utilizing the dynamical
winding number in a real-space picture. Our study indicates
the limitation of perturbative calculations that only refer to
the renormalization of the superconducting part in the BdG
Hamiltonian in mimicking the exact numerical result. There-
fore our work reveals an angle where magnetic impurity
physics gets intertwined with the Floquet drive to render the
p-wave superconducting gap, which is extremely nontrivial to
anticipate a priori. This complex phenomenon can be easily
distinguished from the Floquet Rashba NW physics, where the
normal part of the BdG Hamiltonian is only modified [76].
Our numerical findings clearly show a substantial reduction
in the strength of the magnetic impurity to host the Floquet
MEMs compared with that for the static case [82]. How-
ever, we leave a detailed microscopic understanding of the
emergent dynamical Shiba minigap (0 and π gaps) for future
studies. We also provide probable experimental parameters to
realize our setup. These Floquet MEMs are relatively robust
as we start from the trivial phase and possibly can be probed
by the STM signal.
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