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We theoretically investigate the Floquet generation of a second-order topological superconducting (SOTSC)
phase hosting Majorana corner modes (MCMs), considering a quantum spin Hall insulator with a proximity-
induced superconducting s-wave pairing in it. Our dynamical prescription consists of the periodic kick in time-
reversal symmetry breaking the in-plane magnetic field and fourfold rotational symmetry breaking the mass term
in the bulk while these Floquet MCMs are preserved by antiunitary particle-hole symmetry. The first driving
protocol always leads to four zero-energy MCMs (i.e., one Majorana state per corner) as a sign of a strong
SOTSC phase. Interestingly, the second protocol can result in a weak SOTSC phase, harboring eight zero-energy
MCMs (two Majorana states per corner), in addition to the strong SOTSC phase. We characterize the topological
nature of these phases by a Floquet quadrupolar moment and Floquet Wannier spectrum. We believe that relying
on the recent experimental advancement in the driven systems and proximity - superconductivity, our schemes
may be possible to test in the future.
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I. INTRODUCTION

Recently, topological superconductors (TSCs) hosting Ma-
jorana zero-energy modes at their boundaries have attracted
enormous attention both theoretically and experimentally
due to their connection with non-Abelian exchange statistics
and potential applications in topological quantum computa-
tion [1–6]. The heterostructures of materials with strong spin-
orbit coupling such as topological insulator, semiconductor
thin films, and nanowires with proximity-induced supercon-
ductivity are proposed to provide an efficient platform for
the realization of Majorana zero modes (MZMs) [7–11]. The
latter have also been experimentally realized recently [12–16].
In such heterostructures, MZMs are usually localized at
two-dimensional (2D) vortex cores or one-dimensional (1D)
edges where the topological superconducting gap in the bulk
spectrum changes its sign. Very recently, the conventional
bulk-boundary correspondence has been generalized in the
context of higher-order topological insulators (HOTIs) and
higher-order topological superconductors (HOTSCs) [17–48].
Precisely, an nth-order topological insulator or supercon-
ductor in m dimensions hosts dc = (m − n)-dimensional
boundary modes (n � m). For example, a three-dimensional
(3D) second- (third-) order topological insulator (SOTI) hosts
gapless modes on the hinges (corners), characterized by dc =
1 (0). In particular, the SOTI phase has been experimentally
realized in acoustic materials [49], photonic crystals [50,51],
and electrical circuit [52] setups.

Nonequilibrium aspects of topological phases have at-
tracted a great deal of attention in the community as the driven
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topological systems exhibit nontrivial properties which are
absent in the corresponding static phase [53–59]. The Floquet
machinery allows one to keep track of the time-dependent
problem of periodically driven systems in a time-independent
way with an effective Floquet Hamiltonian, defined in the
frequency space [60,61]. Therefore, the equilibrium notion
of the topological invariant can be extended to Floquet
topological phases where anomalous edge states or Floquet
Majorana modes between two consecutive Floquet Brillouin
zones appear [55,62,63]. Interestingly, Floquet engineering by
suitably tuning appropriate perturbation can lead to Floquet
HOTI phases starting from a lower order or nontopological
phases [64–77]. Therefore, a bunch of fundamentally impor-
tant questions naturally arise: (a) Can the Floquet HOTSC
phase be engineered by periodically driving the appropriate
perturbation? (b) How does one topologically characterize the
Floquet HOTSC phase? In this paper, we intend to address
these intriguing questions which have not been reported so far
in the literature, to the best of our knowledge.

In this paper, we demonstrate a general mechanism of
engineering the Floquet SOTSC phase by periodically kick-
ing the quantum spin Hall insulator (QSHI) Hamiltonian,
proximitized by an s-wave superconductor. For the first case,
we consider the periodic kicking in time-reversal symme-
try (TRS) T breaking magnetic field to obtain the SOTSC
phase hosting MCMs. In our second case, we introduce the
kicking in fourfold rotational symmetry C4 and T breaking
terms so the underlying edge states of QSHI phases become
gapped and MCMs appear due to Jackiw-Rebbi index theo-
rem [78]. Our dynamical model is schematically illustrated
in Fig. 1 where the 2D QSHI/s-wave superconductor het-
erostructure is depicted with the general dynamical kicking
protocol of perturbation V (t ). The MCMs appear between
adjacent boundaries (edges I, II, III, and IV). We analytically
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FIG. 1. Schematic of our setup is illustrated in presence of peri-
odic kick (red, grey) as an external drive. Here, a 2D QSHI (violet,
light grey) is placed in close proximity to a bulk s-wave supercon-
ductor (green, grey). MCMs are shown by circular dots (orange, light
grey) and the four edges of the 2D QSHI are denoted by I, II, III, IV.

derive the effective edge Hamiltonian for both the driven cases
mentioned above to analyze the domain-wall formation asso-
ciated with the sign change of Dirac mass of the underlying
low-energy Hamiltonian. These SOTSC phases are appropri-
ately characterized by both Floquet Wannier spectra (FWS)
and Floquet quadrupolar moments (FQMs).

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model Hamiltonian and the driving
protocol. In Sec. III, we provide the effective Floquet Hamil-
tonian and illustrate the emergence of Floquet MCMs in the
local density of states (LDOS) behavior. In Sec. IV, we char-
acterize the higher order topological phase hosting MCMs
by employing the appropriate topological invariants FQMs
and FWS that are extensively discussed in Appendix A. In
Sec. V, we resort to low-energy edge theory to understand the
analytical solutions of the zero-energy MCMs. We provide the
detailed analysis of that in Appendixes B and C. In Sec. VI,
we provide our alternative dynamical protocol to realize the
MCMs, and the necessary calculational details are properly
supplemented in Appendixes B and C. Finally, in Sec. VII,
we summarize and conclude our results.

II. MODEL HAMILTONIAN AND DRIVING PROTOCOL

We begin with the static Hamiltonian of a 2D QSHI placed
in close proximity to a bulk s-wave superconductor [39],

H0 = N(k) · � , (1)

with N(k) = (N1(k), N2(k), N3(k), N4), N1(k) = 2λx sin kx,
N2(k) = 2λy sin ky, N3(k) = ξk = (m0 − 2tx cos kx −
2ty cos ky), and N4 = �. Here, tx,y and λx,y represent
the nearest-neighbor hopping and spin-orbit coupling,
respectively, � is the superconducting gap induced via the
proximity effect, m0 is the crystal-field splitting energy, and
μ is the chemical potential. Also, �1 = σxsz, �2 = σyτz,
�3 = σzτz, and �4 = syτy. The three Pauli matrices σ, s, and
τ act on orbital (a, b), spin (↑,↓), and particle-hole degrees
of freedom, respectively. We work in the following basis:

Ck = (ck,a↑, c†
−k,a↑, ck,a↓, c†

−k,a↓, ck,b↑, c†
−k,b↑, ck,b↓, c†

−k,b↓)
T

.
We consider chemical potential μ = 0 to obtain analytical

results for the edge modes, otherwise, μτz can be added to the
Hamiltonian [Eq. (1)].

The Hamiltonian represented by Eq. (1) preserves TRS
T = isyK with K being the complex conjugation. If � = 0,
the QSHI phase is observed when [m2

0 − (2tx + 2ty)2][m2
0 −

(2tx − 2ty)2] < 0 [79], hosting gapless propagating helical
edge modes [80–82]. When � �= 0, a superconducting gap
opens both in the bulk and helical edge spectrum and the sys-
tem becomes a trivial BCS superconductor [39]. Interestingly,
Hamiltonian [Eq. (1)] continues satisfying the unitary chiral
symmetry P = σxsyτz and antiunitary particle-hole symmetry
C = τxK . These two symmetries turn out to be very important
in determining the robustness of the SOTSC phase.

We now introduce our driving protocol in the form of
periodic kick as follows:

V (t ) = hx�5

∞∑
r=1

δ(t − rT ) (2)

and

V (t ) = 	(k)�6

∞∑
r=1

δ(t − rT ) , (3)

where, Eq. (2) represents the TRS breaking driving protocol
due to the in-plane Zeeman field hx applied along x direction,
T is the period of the drive, �5 = sxτz, and �6 = σxsxτz. Here,
the physical meaning of �6 can be understood in terms of
some hopping parameter that simultaneously flips both the
orbital and spin. The detailed outcome of C4 and TRS sym-
metry breaking driving protocol [Eq. (3)] will be discussed
in Sec VI. In the static limit, H I

sta = H0 + hx�5, is found to
host MCMs in the SOTSC phase when hx > � [39]. The
quasiparticle band gap of the edges does not close along ky

direction while the gap can be tuned along the kx direction,
resulting in a topological phase transition and exponentially
localized MCMs appear at zero energy protected by P and C
symmetries, although the bulk always remains gapped.

III. EFFECTIVE FLOQUET HAMILTONIAN

Following the periodic kick [see Eq. (2)], the Floquet op-
erator reads

U (T ) = T̃ O exp

[
−i

∫ T

0
dt (H0 + V (t ))

]
= exp(−iH0T ) exp(−ihx�5) . (4)

We can write U (T ) in a more compact form as

U (T ) = CT (n0 − in5�5) − iST

4∑
j=1

(mj� j + p j� j5) , (5)

where, CT = cos(|N(k)|T ), ST = sin(|N(k)|T ), n0 = cos hx,
n5 = sin hx, mj = Nj (k) cos hx

|N(k)| , p j = Nj (k) sin hx

|N(k)| , and � j5 =
1
2i [� j, �5] with j = 1, 2, 3, 4. The general form of the effec-
tive Hamiltonian is thus found to be

HI
eff = εk

sin εkT

[
sin(|N(k)|T ) cos hx

4∑
j=1

n j� j + cos(|N(k)|T ) sin hx�5 + sin(|N(k)|T ) sin hx

4∑
j=1

n j� j5

]
, (6)
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FIG. 2. (a) LDOS in finite geometry is demonstrated for driving
protocol [Eq. (2)] and inset exhibits the eigenvalue spectrum for
the same. Here, Lx = Ly = 30, m0 = tx = ty = λx = λy = 1.0, � =
0.4, hx = 0.4, T = 0.628. (b) The edge spectrum is shown for open
boundary condition along y direction for Eq. (7). The edge gap closes
when � = hx

T . (c) LDOS in finite geometry and eigenvalue spectrum
[insets (I1) and (I2)] are depicted for driving protocol [Eq. (3)]. We
choose 	 = 0.3 and the value of the other parameters remain the
same as panel (a). For insets (I1) and (I2), we choose the parameter
regime as | m	

2txT |, | m	

2tyT | > �, and | m	

2txT | < � < | m	

2tyT |, respectively.
(d) The edge spectrum is shown for open boundary condition along
y direction for the effective Hamiltonian [Eq. (11)]. The edge gap
closes when � = | m	

2txT |. See text for discussion.

with εk = 1
T cos−1 [cos(|N(k)|T ) cos hx], n j = Nj (k)

|N(k)| . In the
high-frequency limit i.e., T → 0 and hx → 0, neglecting the
higher-order terms in T and hx, we find

HI
eff ≈

4∑
j=1

Nj (k)� j + hx

T
�5 + hx

4∑
j=1

Nj (k)� j5 . (7)

Note that in Eq. (7), terms associated with � j5 appears
due to the drive and are absent in the static model; interest-
ingly, only �15 among � j5 does not commute with HI

sta. As
a result, HI

eff loses the chiral symmetry generated by the uni-
tary operator P . Remarkably, HI

eff preserves the particle-hole
symmetry, which allows the generation of a Floquet SOTSC
phase with MCMs after the dynamical breaking of TRS. We
now tie up our analytical finding by numerically diagonalizing
the exact Floquet operator [Eq. (4)] in the open boundary
condition (OBC). One can obtain Floquet quasistates |φn〉 and
quasienergies μn from U (T ): U (T )|φn〉 = exp(−iμnT )|φn〉.
We present the LDOS associated with the zero (within numer-
ical accuracy) quasienergy Floquet quasistates in Fig. 2(a).
These zero-energy quasistates correspond to the MCMs which
are localized at the four corners of the system.

FIG. 3. (a) Variation of FQM QFlq
xy is demonstrated as a function

hx for driving protocol [Eq. (2)]. In the inset, the same has been
depicted with respect to 	 for driving protocol [Eq. (3)]. We choose
Lx = Ly = 16, m0 = tx = ty = λx = λy = 1.0, � = 0.4, T = 0.628.
(b) FWS νFlq

x with respect to the state index is shown for driving
protocol Eqs. (2) and (3), insets (I1) and (I2) respectively. For driv-
ing protocol [Eq. (2)], we choose hx > �T . Insets (I1) and (I2)
have been depicted for the parameter regime | m	

2txT |, | m	

2tyT | > �, and

| m	

2txT | < � < | m	

2tyT |, respectively, for driving protocol [Eq. (3)].

IV. TOPOLOGICAL CHARACTERIZATION OF MCMS

To analyze the topological robustness of the Floquet
MCMs in the SOTSC phase, we numerically compute the
FQM [based on Floquet quasistates obtained from numerical
diagonalization of Eq. (4)], QFlq

xy , and the FWS ν
Flq
x [based on

T → 0 effective Hamiltonian Eq. (7)] as shown in Figs. 3(a)
and 3(b), respectively. At the outset, we note that in the
static limit, these invariants possess a quantized value of
0.5. The FQM is defined through the Floquet many-body
ground state nF composed by arranging the occupied quasis-
tates columnwise associated with the quasienergy −ω/2 �
μn � 0: nF = ∑

n∈μn�0 |φn〉〈φn| [64,69]. We obtain QFlq
xy ≡

mod(QFlq
xy , 1) = 0.5, this quantization [for a finite range of hx

in protocol [Eq. (2)] is depicted in Fig. 3(a) and clearly sug-
gests that the SOTSC phase, hosting MCMs, is topologically
robust. Furthermore, we compute another invariant, namely,
the eigenvalue ν

Flq
x of Floquet Wannier Hamiltonian HFlq

Wx
.

The FWS ν
Flq
x (νFlq

y ), demonstrated in Fig. 3(b), exhibits two
isolated eigenvalues at 0.5, referring to the signature of MCMs
in the SOTSC phase for this protocol. We refer the readers to
Appendix A for the detailed calculation of FWS ν

Flq
x (νFlq

y ).

V. LOW-ENERGY EDGE THEORY

Here we proceed to derive the edge theory for the Flo-
quet case starting from the effective Hamiltonian [Eq. (7)] in
T → 0 limit. The low-energy effective Hamiltonian around
� = (0, 0) point can be written as

H I
eff,k ≈ (

m + txk2
x + tyk2

y

)
�3 + 2λxkx�1 + 2λyky�2

+��4 + hx

T
�5 + 2λxhxkx�15 , (8)

where m = (m0 − 2tx − 2ty) and we assume m < 0 to satisfy
the topological condition [79]. We consider here the minimal
model as �15 is only incorporated among all the � j5. As a
representative example, for edge I, we employ OBCs [peri-
odic boundary conditions (PBCs)] along the x (y) direction.
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One can thus rewrite HI
eff,k = HI (−i∂x ) + HP(−i∂x, ky, hx ),

neglecting the k2
y term. Here, HI = (m − tx∂2

x )�3 − 2iλx∂x�1

and HP = 2λyky�2 + ��4 + hx
T �5 − 2iλxhx∂x�15. Assuming

� to be the zero-energy eigenstate of HI , we obtain (see
Appendix B for details)

�α = |Nx|2e−Ax sinBxeikyy�α , (9)

where A = λx
tx

, B =
√

|m
tx
| − A2, |Nx|2 = 4A(A2+B2 )

B2

and �α is an eight-component spinor satisfying
σyszτz�α = −�α . We choose the following basis: �1 =
|σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,�2 = |σy = −1〉 ⊗
|sz = +1〉 ⊗ |τz = +1〉 ,�3 = |σy = −1〉 ⊗ |sz = −1〉 ⊗
|τz = −1〉 ,�4 = |σy = +1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉
to cast the effective Hamiltonian for edge I as
H I,edge

i = −2λykysz − �syτy. Now the low-energy effective
Hamiltonian for the lth edge is given as (see Appendix B for
details)

H I,edge
l = −iAlsz∂l − iBlsyτz∂l − �syτy − hlsxτz , (10)

with Al = {−2λy, 2λx,−2λy, 2λx}, Bl = {0,−2λxhx, 0,−2
λxhx}, and hl = {0, hx

T , 0, hx
T }. One can thus observe that the

superconducting pairing gap has been induced in all the he-
lical edge states irrespective of the Zeeman fields in that
edge as {sz, syτy} = 0. On the other hand, hx can only open
up a Zeeman gap on two parallel edges (II and IV) without
affecting two other perpendicular edges (I and III). We depict
the quasienergy spectrum of the semi-infinite slab geometry
in Fig. 2(b) to manifest the gap closing at � = hx

T .
In τx = ±sz subspace, the last term in Eq. (10) can be writ-

ten as hlsxτz → ∓hl syτy. We eventually obtain two decoupled
diagonal blocks with Dirac masses � ± hx

T for edge II while,
for edge I, the Dirac masses are of the same sign in these
blocks. Therefore, for hx > �T , Dirac masses on edges I and
II carry opposite signs, leading to localized MCMs at the in-
tersection of two perpendicular edges. Interestingly, compared
to the static case, the MCMs in the Floquet SOTSC phase can
be observed for a much smaller value of the in-plane magnetic
field hx as T → 0 in the high-frequency limit. One can find the
wave function for the zero-energy MCM localized at the inter-
section between edges I and II, as �C ∼ exp [−(�/2λy)y]�C

and �C ∼ exp [−(|hx − �T |/2λxT )x]�C for edges I and II,
respectively, with �C = {1,−1, i, i}T (see Appendix C for the
derivation). The localization length of MCM can be different
in different directions when |hx − �T |/2λxT �= �/2λy and it
can be controlled along edge II by the period or frequency of
the Floquet driving.

VI. ALTERNATIVE DYNAMICAL PROTOCOL FOR
REALIZING MCMS

Having established a route to obtain Floquet SOTSC
starting from a static proximity-induced QSHI, we here
demonstrate another driving protocol to obtain the same by
breaking the C4 symmetry and TRS of the QSHI phase
instead of an in-plane Zeeman field discussed before. We
work with the dynamical protocol given in Eq. (3), where
	(k) = 	(cos kx − cos ky). Upon adding this term with the
static Hamiltonian [Eq. (1)], H II

sta = H0 + 	(k)�6, one can
find MCMs localized at zero energy and protected by unitary

P and antiunitary C symmetry [38]. Following our dynamical
protocol, we numerically diagonalize the Floquet operator
[Eq. (4)] for this case and find strong corner localization of
Majorana modes. In this case, eight Floquet MCMs appear at
quasienergy μn = 0 (within numerical accuracy) as shown in
Fig. 2(c)(I1). The MCMs obtained here are characteristically
different from that originated by kicking the in-plane mag-
netic field where four zero-energy MCMs are observed. For hx

kicking [Eq. (2)], the individual single-particle state residing
at μn = 0 exhibits Majorana localization at a single corner. On
the other hand, for 	(k) kicking [Eq. (3)], we find there exist
at least two single-particle states sharing individual corners.

For this protocol also, we derive the Floquet
operator as follows: U (T ) = CT (n0 − in6�6) −
iST

∑4
j=1 (mj� j + p j� j6) where, CT = cos(|N(k)|T ),

ST = sin(|N(k)|T ), n0 = cos 	(k), n6 = sin 	(k),
mj = Nj (k) cos 	(k)

|N(k)| , p j = Nj (k) sin 	(k)
|N(k)| and � j6 = 1

2i [� j, �6].
In the high-frequency limit T → 0 and 	 → 0, the effective
Floquet Hamiltonian takes the form

HII
eff ≈

4∑
j=1

Nj (k)� j + 	(k)

T
�6 + 	(k)

4∑
j=1

Nj (k)� j6 . (11)

Similar to the effective Hamiltonian [Eq. (7)], here the
drive-induced terms are associated with � j6, which essentially
break the unitary symmetry P . Importantly, the antiunitary
particle-hole symmetry generated by C assure the zero-energy
states are localized at the corners. Following the same pro-
cedure described for the previous protocol, we obtain the
low-energy effective Hamiltonian of the edges in the edge-
coordinate l as (see Appendix B for details)

H II,edge
l = −iAlsz∂l + iBlsx∂l − �syτy + 	l sy , (12)

with Al = {−2λy, 2λx,−2λy, 2λx}, Bl = {mλy	

tx
, mλx	

ty
,

mλy	

tx
, mλx	

ty
} and 	l = {− m	

2txT , m	
2tyT ,− m	

2txT , m	
2tyT }. For more

insight, let us first consider � = 0. It is evident that 	l

changes signs at each corner and leads to a domain-wall
formation of Dirac mass causing zero-energy Jackiw-Rebbi
modes to appear at the corners [64,69,78]. Due to the
inclusion of the superconducting correlation, H II,edge

l can be
decomposed into two independent parts as

H II,edge
l = Hτy=+1 ⊕ Hτy=−1 , (13)

where

Hτy=+1 = −iAlsz∂l + iBlsx∂l + [−� + 	l ]sy,

Hτy=−1 = −iAlsz∂l + iBlsx∂l + [� + 	l ]sy . (14)

The domain walls for both sectors τy = ±1 appear when
| m	

2txT |, | m	
2tyT | > �. As a result, one finds two MCMs solutions

[see Fig. 2(c)(I1)] per corner with the superposed wave func-

tion �C ∼ α e− MI−�

2λy
y
�1

C + β e− MI+�

2λy
y
�2

C for edge I. This
phenomenon does not appear in the hx-kick case where the
domain wall for the Dirac mass appears only in one block
of the edge Hamiltonian and the other block remains inactive
(massive). On the other hand, for | m	

2txT | < � < | m	
2tyT |, the do-

main walls exist in τy = +1 block, but not in τy = −1 block.
This results in a situation where only one MCM can present at

045424-4



FLOQUET GENERATION OF A SECOND-ORDER … PHYSICAL REVIEW B 103, 045424 (2021)

each corner [see Fig. 2(c)(I2)] with the wave function �C ∼
e− MI+�

2λy
y
�1

C for edge I. See Appendix C for the derivation of
the MCMs wave functions. The gap closing at � = | m	

2txT |
has been illustrated in Fig. 2(d) based on a slab geometry
calculation.

We also calculate the FQM which appears to be QFlq
xy =

0.0 (0.5) [see inset of Fig. 3(a)] when there exist eight (four)
MCMs at zero energy [see Figs. 2(c)(I1) and 2(c)(I2)]. This
is because two MCMs sharing each corner can fuse to a
fermionic mode, resulting in vanishing QFlq

xy . On the other
hand, one can find four (two) ν

Flq
x(y) = 0.5 eigenvalues associ-

ated with the Floquet Wannier Hamiltonian for the SOTSC
phase with eight (four) zero-energy MCMs as shown in
Figs. 3(b)(I1) and (3(b)(I2). While for hx kick, there exist only
two ν

Flq
x = 0.5 eigenvalues associated with four zero-energy

MCMs. Thus one can infer that eight (four) MCMs represent
the weak (strong) SOTSC phase. However, this subtlety can-
not be distinguished from the feature of LDOS [see Figs. 2(a)
and 2(c)].

VII. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we demonstrate two dynam-
ical protocols to generate Floquet SOTSC phases hosting
MCMs. In particular, a kick in the in-plane Zeeman field
hx, breaking the TRS, can lead to a strong SOTSC phase
hosting only one MCM at each corner. In comparison, a C4

and TRS breaking perturbation 	(k) can lead to eight (four)
MCMs referring to weak (strong) SOTSC phase. We inves-
tigate the emergence of dynamical MCMs, localized at zero
quasienergy, by numerically diagonalizing the exact Floquet
operator and analytically from the effective edge Hamiltonian.
We show that these MCMs are protected by the antiunitary
particle-hole symmetry. We also characterize these phases by
appropriate topological invariants such as FQM (QFlq

xy ) and
FWS [νFlq

x (νFlq
y )].

As far as the experimental feasibility of our setup is
concened, superconductivity in QSHIs can be induced via
proximity effect (e.g., NbSe2) [83,84] with an induced gap
� ∼ 0.7 meV [84]. In recent times, experimental advance-
ments on pump-probe techniques [58,85,86] have enabled
one to observe Floquet topological insulators [85]. Therefore,
we believe that the signature of MCMs may be possible to
achieve via pump-probe-based local scanning tunneling mi-
croscope (STM) measurements [87] for an in-plane magnetic
field hx ∼ 7 − 8 T. On the other hand, our alternative dynam-
ical protocol for generating SOTSC phases can in principle
be realized in optical lattice platforms where spin-orbit cou-
pling, flipping the spin, is theoretically proposed [88–92] and
experimentally realized [90,93–96]. Moreover, the synthetic
spin-orbit coupling can in principle be realized in acous-
tic material [97]. In recent times, Floquet driving has been
experimentally demonstrated in various meta-materials such
as piezoelectric material [98], acoustic systems [86], and
photonic systems [57], etc. In particular, anomalous Floquet
topological insulator (AFTI) has been experimentally demon-
strated in acoustic systems [86]. The model of AFTIs is a
2D coupled metamaterial ring lattice. One can introduce an
orbital-like degree of freedom (σ) to the rings with two artifi-

FIG. 4. (a) FWS is shown as a function of the in-plane magnetic
field hx for driving protocol 1 [Eq. (2) in the main text]. (b) FWS is
illustrated as a function of the C4 and T breaking mass term 	 for
driving protocol 2 [Eq. (3) in the main text].

cial atoms (ring resonators) A and B [99]. Also one can define
a pseudospin (s) for acoustic waves based on wave circulation
direction in each ring within the lattice. Thus, introducing the
ring pseudospin degree of freedom and the proper inter-ring
coupling, a synthetic spin-orbit interaction can be success-
fully induced which breaks the pseudospin conservation [97].
Therefore, an acoustic wave carrying a pseudospin in one
lattice ring may tunnel into the adjacent coupled ring with the
pseudospin flipped and in that process both orbital and spin
can be effectively flipped. Hence, our alternative dynamical
protocol [Eq. (3)] is pertinent as far as the experiments on
optical lattices and acoustic systems are concerned.
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APPENDIX A: FLOQUET WANNIER SPECTRA

In the semi-infinite geometry (considering PBCs and OBCs
along x and y directions, respectively), we construct the Wil-
son loop operator [19] Wx = Fx,kx+(Nx−1)�kx · · · Fx,kx+�kx Fx,kx

with [Fx,kx ]mn = 〈φn,kx+�kx |φm,kx 〉, where �kx = 2π/Nx (Nx

being the number of discrete points considered inside the Bril-
louin zone along kx) and |φm,kx 〉 is the mth occupied Floquet
quasistate. The latter can be obtained by diagonalizing the ef-
fective Floquet Hamiltonian in the high-frequency limit. One
can thus obtain the Wannier Hamiltonian, HFlq

Wx
= −i lnWx,

whose eigenvalues 2πν
Flq
x correspond to the FWS. Here,

ν
Flq
x ≡ mod(νFlq

x , 1) is the Wannier center. One can similarly
find ν

Flq
y . The feature of FWS characterizes the topological

phase transition from a trivial to HOTSC phase in our case. In
the Floquet HOTSC phase, it acquires a quantized value 0.5
as shown in Fig. 4.

APPENDIX B: LOW-ENERGY EDGE THEORY

Here, we present the details of the low-energy edge theory
calculation for both our driving protocols.
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1. Driving by in-plane magnetic field hx

We begin by writing down the low-energy effective Hamil-
tonian in the high-frequency limit [Eq. (7) in the main text]
around the � = (0, 0) point,

HI
eff,k ≈ (

m + txk2
x + tyk2

y

)
�3 + 2λxkx�1 + 2λyky�2

+��4 + hx

T
�5 + 2λxhxkx�15 , (B1)

For edge II, we consider PBCs (OBCs) along x (y) direction.
Hence, we replace ky by −i∂y and rewrite HI

eff,k = HI (−i∂y) +
HP(−i∂y, kx, hx ), neglecting k2

x term with

HI = (
m − ty∂

2
y

)
�3 − 2iλy∂y�2 ,

HP = 2λxkx�1 + ��4 + hx

T
�5 + 2λxhxkx�15 . (B2)

Here, we choose m < 0 to satisfy the Fu-Kane criteria [79].
We solve HI exactly and treat HP as a perturbation. This
approximation is valid when we assume the pairing amplitude,
�, and the amplitude of the in-plane magnectic field, hx to be
small [39]. We also consider any term multiplied by hx or �

to be small.
Assuming � to be the zero-energy eigenstate of HI , fol-

lowing the boundary condition �(0) = �(∞) = 0, we obtain

�α = |Ny|2e−Ãy sin B̃y eikxxχα , (B3)

where Ã = λy

ty
, B̃ =

√
|m

ty
| − Ã2, |Ny|2 = 4Ã(Ã2+B̃2 )

B̃2 and χα is

an eight-component spinor satisfying σxχα = χα . We work in
the following basis for χα as

χ1 = |σx = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

χ2 = |σx = +1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

χ3 = |σx = +1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

χ4 = |σx = +1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 . (B4)

The matrix element of HP in this basis reads

H I,edge
ii,αβ =

∫ ∞

0
dy �†

α (y)HP(−i∂y, kx, hx )�β (y) . (B5)

Thus we obtain the effective Hamiltonian for edge II as

H I,edge
ii = 2λxkxsz − 2λxhxkxsyτz − �syτy − hx

T
sxτz , (B6)

Similarly, for edge IV, we obtain the effective Hamiltonian as

H I,edge
iv = 2λxkxsz − 2λxhxkxsyτz − �syτy − hx

T
sxτz . (B7)

For edge III, we consider OBCs (PBCs) along x
(y) direction. One can thus rewrite H I

eff,k = HI (−i∂x ) +
HP(−i∂x, ky, hx ) by replacing kx → −i∂x and neglecting the
k2

y term with

HI = (
m − tx∂

2
x

)
�3 − 2iλx∂x�1 ,

HP = 2λyky�2 + ��4 + hx

T
�5 − 2iλxhx∂x�15 . (B8)

Assuming � to be the zero-energy eigenstate of HI , fol-
lowing the boundary condition �(0) = �(−∞) = 0, and

proceeding in a similar manner as before, we obtain

�α = |Nx|2eAx sinBx eikyy�′
α , (B9)

where A = λx
tx

, B =
√

|m
tx
| − A2, |Nx|2 = 4A(A2+B2 )

B2 and �′
α

is an eight-component spinor satisfying σyszτz�
′
α = �′

α . We
choose the following basis:

�′
1 = |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 ,

�′
2 = |σy = +1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

�′
3 = |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

�′
4 = |σy = −1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 . (B10)

The matrix element of HP in this basis can be written as

H I,edge
iii,αβ =

∫ 0

−∞
dx �†

α (x)HP(−i∂x, ky, hx )�β (x) . (B11)

Thus we obtain the effective Hamiltonian for edge III as

H I,edge
iii = −2λykysz − �syτy . (B12)

Therefore, the effective Hamiltonian for the four edges
together can be written as

H I,edge
i = −2λykysz − �syτy,

H I,edge
ii = 2λxkxsz − 2λxhxkxsyτz − �syτy − hx

T
sxτz,

H I,edge
iii = −2λykysz − �syτy,

H I,edge
iv = 2λxkxsz − 2λxhxkxsyτz − �syτy − hx

T
sxτz . (B13)

2. Driving by C4 and T breaking mass term �

For this driving protocol also, we continue as before by
writing down the low-energy effective Hamiltonian in the
high-frequency limit [Eq. (11) in the main text] around the
� = (0, 0) point as

H II
eff,k = (

m + txk2
x + tyk2

y

)
�3 + 2λxkx�1 + 2λyky�2 + ��4

+ 	

2T

( − k2
x + k2

y

)
�6 + λx	kx

( − k2
x + k2

y

)
�16

+λy	ky
( − k2

x + k2
y

)
�26

+	

2

(
m + txk2

x + tyk2
y

)( − k2
x + k2

y

)
�36 . (B14)

For edge I, we consider OBCs (PBCs) along x (y) di-
rection and, as before, we rewrite H II

eff,k = HI (−i∂x ) +
HP(−i∂x, ky,	). We replace kx → −i∂x and neglect the k2

y
term. Thus we obtain

HI = (
m − tx∂

2
x

)
�3 − 2iλx∂x �1 ,

HP = 2λyky�2 + ��4 + 	

2T
∂2

x �6 − iλx	 ∂3
x �16

+λy	ky∂
2
x �26 + m	

2
∂2

x �36 − 	tx
2

∂4
x �36 , (B15)

Here, we consider the pairing amplitude � and the amplitude
of the mass term 	 to be small and treat them as small pertur-
bation [28,38]. Assuming � to be the zero-energy eigenstate
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of HI and following the boundary condition �(0) = �(∞) =
0, we obtain

�α = |Nx|2e−Ax sinBx eikyy�α , (B16)

where A = λx
tx

, B =
√

|m
tx
| − A2, |Nx|2 = 4A(A2+B2 )

B2 and �α

is an eight-component spinor satisfying σyszτz�α = −�α .
Our chosen basis reads

�1 = |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

�2 = |σy = −1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

�3 = |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

�4 = |σy = +1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 . (B17)

The matrix element of HP in this basis reads

H II,edge
i,αβ =

∫ ∞

0
dx �†

α (x)HP(−i∂x, ky,	)�β (x) , (B18)

Thus we obtain the effective Hamiltonian for edge I as

H II,edge
i = −2λykysz − mλy	

tx
kysx − �syτy − m	

2txT
sy ,

(B19)
Similarly, for edge III, we obtain the effective Hamiltonian as

H II,edge
iii = −2λykysz − mλy	

tx
kysx − �syτy − m	

2txT
sy .

(B20)
For edge II, we employ OBCs (PBCs) along y (x) direction.

One can thus rewrite H II
eff,k = HI(−i∂y) + HP(−i∂y, kx,	),

neglecting the k2
x term, which yields

HI = (
m − ty∂

2
y

)
�3 − 2iλy∂y�2 ,

HP = 2λxkx�1 + ��4 − 	

2T
∂2

y �6 + iλy	∂3
y �26

−λx	kx∂
2
y �16 − m	

2
∂2

y �36 + 	tx
2

∂4
x �36 , (B21)

Assuming � to be the zero-energy eigenstate of HI , following
the boundary condition �(0) = �(∞) = 0, we obtain

�α = |Ny|2e−Ãy sin B̃y eikxxχα , (B22)

where Ã = λy

ty
, B̃ =

√
|m

ty
| − Ã2, |Ny|2 = 4Ã(Ã2+B̃2 )

B̃2 and χα is

an eight-component spinor satisfying σxχα = χα . We choose
the following basis:

χ1 = |σx = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

χ2 = |σx = +1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

χ3 = |σx = +1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

χ4 = |σx = +1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 . (B23)

The matrix element of HP in this basis can be written as

H II,edge
ii,αβ =

∫ ∞

0
dy �†

α (y)HP(−i∂y, kx,	)�β (y) , (B24)

We obtain the effective Hamiltonian for edge II as

H II,edge
ii = 2λxkxsz − mλx	

ty
kxsx − �syτy + m	

2tyT
sy (B25)

Similarly, for edge IV, we obtain the effective Hamiltonian as

H II,edge
iv = 2λxkxsz − mλx	

ty
kxsx − �syτy + m	

2tyT
sy . (B26)

Therefore, the effective Hamiltonian for the four edges can
be written as

H II,edge
i = −2λykysz − mλy	

tx
kysx − �syτy − m	

2txT
sy,

H II,edge
ii = 2λxkxsz − mλx	

ty
kxsx − �syτy + m	

2tyT
sy,

H II,edge
iii = −2λykysz − mλy	

tx
kysx − �syτy − m	

2txT
sy,

H II,edge
iv = 2λxkxsz − mλx	

ty
kxsx − �syτy + m	

2tyT
sy . (B27)

APPENDIX C: MAJORANA CORNER MODE SOLUTIONS

Here, we provide the solutions for the zero-energy MCMs
for both the driving protocols.

1. Driving by in-plane magnetic field hx

To obtain the corner state solution (when hx > �T ), in the
intersection between edges I and II, we solve the correspond-
ing edge Hamiltonian for the zero-energy solution. At edge I,
we assume a solution of the form

�C ∼ e−λy�C , (C1)

where �C is a four component spinor. The secular equation
for �C is given by

det
[
H I,edge

i

] = 0 . (C2)

We find four solutions for λ as

λ =
{
− �

2λy
,− �

2λy
,

�

2λy
,

�

2λy

}
. (C3)

As �C must vanish at y → ∞, therefore, we obtain two
linearly independent solutions, �1

C = {1, 1,−i, i}T and �2
C =

{1,−1, i, i}T . Thus, �C can be expanded as

�C ∼ α e− �
2λy

y
�1

C + β e− �
2λy

y
�2

C . (C4)

Similarly, at edge II, we obtain

�C ∼ α′ e− |hx−�T |
2λx T x�3

C + β ′ e− |hx+�T |
2λx T x�4

C , (C5)

where �3
C = {1,−1, i, i}T and �4

C = {1, 1, i,−i}T . Consider-
ing the wave function �C to be continuous at the boundary
i.e., at x = y = 0, we obtain α = β ′ = 0 and α′ = β. Hence,
the wave function for the Majorana corner mode becomes

�C ∼ e− �
2λy

y
�2

C : edgeI ,

�C ∼ e− |hx−�T |
2λx T x�2

C : edgeII , (C6)

with localization length [ |hx−�T |
2λxT ]

−1
and [ �

2λy
]
−1

along x and y
directions, respectively. Similarly, one can obtain the remain-
ing zero-energy corner mode solutions.
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2. Driving by C4 and T breaking mass term �

a. Weak phase

In this higher-order phase, | m	
2txT |, | m	

2tyT | > �. We proceed
as before and obtain the following solutions at edges I and II:

�C ∼ α e− MI−�

2λy
y
�1

C + β e− MI+�

2λy
y
�2

C : edgeI ,

�C ∼ α′ e− MII+�

2λx
x�3

C + β ′ e− MII−�

2λx
x�4

C : edgeII , (C7)

with MI = | m	
2txT |, MII = | m	

2tyT | and �1
C = {1,−i, 1,−i}T ,

�2
C = {1, i, 1, i}T , �3

C = {1,−i, 1,−i}T and �4
C =

{1, i, 1, i}T . Upon matching the wave function at the boundary
(x = y = 0), we obtain α = α′ and β = β ′. Hence, the final
form of the zero-energy solutions for the corner mode wave
function reads

�C ∼ αe− MI−�

2λy
y
�1

C + βe− MI+�

2λy
y
�2

C : edgeI ,

�C ∼ αe− MII+�

2λx
x�1

C + βe− MII−�

2λx
x�2

C : edgeII . (C8)

Thus, here two corner mode solutions exist for individual
edges.

b. Strong phase

In this phase, we choose MI < � < MII. We obtain the
following solutions at edges I and II:

�C ∼ α e− MI+�

2λy
y
�1

C + β e− �−MI
2λy

y
�2

C : edgeI ,

�C ∼ α′ e− MII−�

2λx
x�3

C + β ′ e− MII+�

2λx
x�4

C : edgeII , (C9)

with �1
C = {1, i, 1, i}T , �2

C = {1,−i,−1, i}T , �3
C =

{1, i, 1, i}T , and �4
C = {1,−i, 1,−i}T . Therefore, matching

the wave function at the boundary, we obtain α = α′ and
β = β ′ = 0. Hence, the final form of the solutions for the
corner-mode wave function becomes

�C ∼ e− MI+�

2λy
y
�1

C : edgeI ,

�C ∼ e− MII−�

2λx
x�1

C : edgeII . (C10)

In a similar fashion, one can obtain the zero-energy solutions
for the remaining MCMs in both these phases.
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