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We theoretically investigate the Floquet generation of second-order topological superconducting (SOTSC)
phase in the high-temperature platform both in two dimension (2D) and three dimension (3D). Starting from a
d-wave superconducting pairing gap, we periodically kick the mass term to engineer the dynamical SOTSC
phase within a specific range of the strength of the drive. Under such dynamical breaking of time-reversal
symmetry (TRS), we show the emergence of the weak SOTSC phase, harboring eight corner modes, i.e., two
zero-energy Majorana per corner, with vanishing Floquet quadrupole moment. On the other hand, our study
interestingly indicates that upon the introduction of an explicit TRS breaking Zeeman field, the weak SOTSC
phase can be transformed into strong SOTSC phase, hosting one zero-energy Majorana mode per corner, with
quantized quadrupole moment. We also compute the Floquet Wannier spectra that further establishes the weak
and strong nature of these phases. We numerically verify our protocol computing the exact Floquet operator in
open boundary condition and then analytically validate our findings with the low energy effective theory (in the
high-frequency limit). The above protocol is applicable for 3D as well as where we find one dimensional (1D)
hinge mode in the SOTSC phase. We then show that these corner modes are robust against moderate disorder and
the topological invariants continue to exhibit quantized nature until disorder becomes substantially strong. The
existence of zero-energy Majorana modes in these higher-order phases is guaranteed by the antiunitary spectral
symmetry.
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I. INTRODUCTION

The advent of topological superconductors (TSCs), harbor-
ing Majorana zero modes (MZMs) at their boundary, have
generated immense interest in the quantum condensed matter
community from both theoretical and experimental perspec-
tives in the last few years [1–5]. Due to the non-Abelian
statistics of the MZMs, they are proposed to be suitable can-
didates for the topological quantum computation [6,7]. There
have been multitudinous proposals based on heterostructure
setup of materials with strong spin-orbit coupling such as
topological insulator, semiconductor thin films, and nanowires
with the proximity induced superconductivity and Zeeman
field that provide an efficient platform to realize the MZMs
[8–12].

In recent times, the concept of conventional bulk-boundary
correspondence of topological phases in various topological
systems such as topological insulators (TIs), Dirac semimet-
als (DSMs), Weyl semimetals (WSMs), TSCs, etc. have
been generalized to higher-order topological (HOT) phases
[13–43]. To be precise, an nth order d-dimensional TI/TSC
exhibits gapless modes on their (d − n)-dimensional bound-
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ary (n � d). In particular, a 3D second (third) order TIs/TSCs
are characterized by the presence of one (zero)-dimensional
hinge (corner) modes, whereas 2D second order topological
insulators (SOTIs)/SOTSCs exhibit zero-dimensional (0D)
corner modes only. There have been a few experimental pro-
posals to realize 2D SOTIs hosting corner modes, based on
acoustic materials [44], photonic crystals [45,46], and electri-
cal circuit [47] setups.

Given the growing interest of the research community in
this field, the nonequilibrium Floquet engineering emerges
as a fertile hunch to generate the dynamical analog of
the HOT phases. It has been shown that a trivial phase
can be made topologically nontrivial with suitable peri-
odic driving [48–54]. The time translational symmetry of
the problem causes the Floquet topological phase to host
dissipationless dynamical topological boundary modes. The
resulting bulk-boundary correspondence here becomes in-
triguing in the presence of the extra-temporal dimension. This
nonequilibrium version of generating topological phase have
been applied to HOTIs/HOTSCs resulting in Floquet HOTIs
(FHOTIs) [55–72]. However, the search for Floquet HOTSCs
(FHOTSCs) is still at its initial stage [59,61,70,73,74] even
from a theoretical point of view.

In a very recent work, we show that the Floquet SOTSC
phase can be engineered by kicking the time-reversal symme-
try (TRS) breaking perturbation while the underlying static,
s-wave proximitized parent system is in a trivial phase [70]. In
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this paper, we aim to generate Floquet SOTSC phase, hosting
MZMs at the corner (hinges) for a 2D (3D) system, by suitably
tuning some other parameter of the underlying first order TI
such as the onsite mass term. Given the recent experimental
advancements in Floquet systems based on solid state systems
[75], metamaterials [52,53,76–78], we believe that our ques-
tion regarding the Floquet generation of MZMs in HOTSC
phase is timely and pertinent. More importantly, the kicking
of the onsite term has been able to demonstrate a variety of
interesting theoretical observation such as Floquet topological
insulator and superconductor [51,58,79,80] dynamical local-
ization [81,82], survival probability of initial state [83,84],
and thus motivates us to consider the onsite mass kicking
dynamical protocol in order to obtain the desired outcome.
However, the dynamical manipulation of mass term is yet to
be experimentally realized. Moreover, the 2D TIs have been
experimentally realized at high-temperature 100 K [85,86],
paving the way to explore the high-temperature platform of
MZMs.

To investigate the above mentioned possibility, we begin
with a 2D TI in close proximity to a d-wave superconductor
with unconventional pairing. Here, we consider the exter-
nal drive to be periodically kicking the onsite mass term of
the first order TI. This results in a weak Floquet SOTSC
(FSOTSC) phase where two MZMs are localized at each
corner of the 2D sample. Here the TRS is dynamically broken
in the effective Floquet Hamiltonian. Remarkably, this degen-
eracy of two Majorana corner modes (MCMs) per corner can
be lifted by incorporating an explicit TRS broken Zeeman
field leading to a strong FSOTSC phase with one MZM per
corner. We numerically study the exact Floquet operator to
obtain the above mentioned results that are further verified
by the low energy effective theory in the high-frequency ap-
proximation. We characterize the topological nature of these
phases by the appropriate topological invariants as Floquet
quadrupole moment (FQM) and Floquet Wannier spectra
(FWS). We then extend our proposal to 3D where also we find
the weak (strong) FSOTSC phase in the absence (presence) of
a homogeneous Zeeman field. Here, the corresponding HOT
phase hosts 1D Majorana hinge modes (MHMs). Further-
more, we investigate the effect of disorder on these Majorana
corner modes (MCMs), and we find that these modes are
robust against moderate disorder strength. The existence of
the MZMs are protected by antiunitary spectral symmetry in
all of the above cases.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model and the driving protocol. We
illustrate the emergence of Floquet MCMs in the local density
of states (LDOS) behavior. We resort to low energy edge
theory to understand the emergence of the corner mode so-
lutions. First, we solve these edge Hamiltonians to derive the
corner mode solution. We characterize the MCMs using FQM
and FWS. In Sec. III, we provide a protocol to generate 3D
FSOTSC. We show the appearance of MHMs in rod geometry.
We use low energy surface theory to confirm the existence of
these hinge modes. Then we provide the analytical solutions
for the hinge modes by solving the surface Hamiltonian. In
Sec. IV, we study the effect of disorder on MZMs and show
that they are robust against a finite amount of disorder. Finally
in Sec. V, we summarize and conclude our results.

FIG. 1. Schematic of our setup is demonstrated in the presence
of a periodic kick (yellow, light gray) in the mass term as an external
drive. Here, a 2D TI (violet, dark gray) is placed in close proximity
to a bulk high-temperature d-wave superconductor (cyan, light gray).
MCMs are shown by circular dots (gray) at the four corners of the 2D
sample and the four edges of the TI are denoted by I, II, III, IV.

II. MAJORANA CORNER MODES IN 2D

In this section, we discuss in detail the model Hamiltonian
of our setup along with the driving protocol, the emergence of
Floquet MCMs by numerically computing the exact Floquet
evolution operator, low energy effective edge theory in the
high-frequency regime and analytical understanding of the
MCMs solutions therein.

A. Model Hamiltonian and driving protocol

1. Model

We consider the model of a 2D TI proximitized with
d-wave superconductivity on a square lattice [23]. This
is schematically shown in Fig. 1. The experimental
realization of high-temperature 2D TI allows us to consider
proximity induced high-temperature superconductor [85,86].
It acquires the following form while written in Bogoliubov-de
Gennes (BdG) basis HBdG = 1

2

∑
k �

†
kH0(k)�k, with �k =

(ck,a↑, c†
−k,a↑, ck,a↓, c†

−k,a↓, ck,b↑, c†
−k,b↑, ck,b↓, c†

−k,b↓)
T̃

and
H0(k), is given by

H0(k) = ε(k)�1 + λx sin kx�2 + λy sin ky�3 + �(k)�4

+ Bx�5 ≡ N(k) · �. (1)

Here, tx,y and λx,y represent the nearest-neighbor
hopping and spin-orbit coupling, respectively, ε(k) =
(m0 − tx cos kx − ty cos ky), �(k) = �0(cos kx − cos ky)
is the d-wave superconducting pairing term, and m0 is the
crystal-field splitting energy. In Eq. (1), �1 = σzτz, �2 = σxsz,
�3 = σyτz, �4 = syτy, and �5 = sxτz. The three Pauli matrices
σ, s, and τ act on orbital (a, b), spin (↑,↓), and particle-hole
degrees of freedom, respectively. When Bx = 0, the system
respects TRS, i.e., T −1H0(k)T = H0(−k) with T = isyK,
K being the complex-conjugation operator. The Hamiltonian
continues to preserve the particle-hole symmetry (PHS)
C−1H0(k)C = −H0(−k) with C = τxK for Bx �= 0. Below
we discuss the properties of our model at length.

First, we discuss the topological nature associated with
the Hamiltonian [Eq. (1)] for �(k) = 0 and Bx = 0. This
model supports topological phase, hosting gapless helical
edge modes, when |m0| < tx + ty. For |m0| > tx + ty, the
model becomes trivially gapped. Upon the introduction of
d-wave pairing only, i.e., �(k) �= 0 and Bx = 0, the 1D mass-
less Dirac fermions representing the edge modes of TI phase,
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become gapped by the induced unconventional superconduct-
ing pairing. However, the specific nature of pairing symmetry
causes the Dirac mass to change signs at the corners. This
in turn generates MCMs, a signature of SOTSC phase for
TRS invariant TSC system, as domain-wall excitations when
|m0| < tx + ty. Here, one can observe Majorana Kramers pairs
(MKPs) (i.e., two Majoranas per corner are time-reversal part-
ners of each other) pinned at zero energy which are protected
by the TRS. When |m0| > tx + ty, the underlying TI becomes
nontopological and d-wave pairing cannot lead to MKPs any-
more as the system becomes gapped. Now, in the presence
of TRS breaking Zeeman field Bx �= 0, the degeneracy of
MKPs can be lifted by destroying one mode in the pair at
the corner. Therefore, the Hamiltonian supports MZMs with
one Majorana per corner for �(k) �= 0 and Bx �= 0 while
|m0| < tx + ty. The magnetic field allows us to tune the bulk
gap which is introduced by the superconducting order param-
eter �(k). Given this background, it would be interesting to
study the emergence of MCMs starting from the underlying
nontopological phase |m0| > tx + ty by periodically kicking
the mass with a finite amplitude and frequency.

2. Driving protocol and Floquet operator

Here we introduce our driving protocol in the form of
periodic kick in the mass term as discussed before

m(t ) = m1

∞∑
r=1

δ(t − rT ), (2)

with r being an integer. This driving protocol allows one to
write the exact Floquet operator in the following way using
the time ordered (TO) notation as

U (T ) = TO exp

[
−i

∫ T

0
dt (H0(k) + m(t )�1)

]

= exp(−iH0(k)T ) exp(−im1�1). (3)

Here, T and m1 are the period and amplitude of the drive,
respectively. The above decomposition essentially means that
the system is freely evolved between two subsequent kicks.
The Floquet operator U (T ) can be written in a more compact
form as follows

U (T ) = CT (p − iq�1) − iST

5∑
j=1

(n j� j + mj� j1), (4)

where CT = cos(|N(k)|T ), ST = sin(|N(k)|T ), p = cos m1,
q = sin m1, n j = Nj (k) cos m1

|N(k)| , mj = Nj (k) sin m1

|N(k)| , and � j1 =
1
2i [� j, �1] with j = 2, 3, 4, 5. One can thus obtain the general
form of the effective Hamiltonian as

HFlq = ξk

sin ξkT

[
sin(|N(k)|T ) cos m1

5∑
j=1

r j� j + cos(|N(k)|T ) sin m1�1 + sin(|N(k)|T ) sin m1

5∑
j=2

r j� j1

]
, (5)

with ξk = 1
T cos−1 [cos(|N(k)|T ) cos m1], r j = Nj (k)

|N(k)| . In the
high-frequency limit, i.e., T → 0 and small amplitude of
drive, i.e., m1 → 0, one can neglect the higher order terms
in T and m1. Thus, the effective Hamiltonian in that limit
reads as

HFlq ≈ H0(k) + m1

T
�1 + m1

5∑
j=2

r j� j1. (6)

In Eq. (6), terms associated with � j1 are originated due to
the driving and not present in the static Hamiltonian [Eq. (1)].
It is noteworthy that these extra r j� j1 terms break TRS T in
the system. Consequently, the above Hamiltonian breaks TRS
T even when Bx = 0. This reflects the fact that the TRS can be
broken dynamically by mass kicking while the static pertur-
bation respects the TRS. Therefore, it would be important to
study the effect of these terms in the dynamics with and with-
out the magnetic field. The former situation can be referred to
as the explicit breaking of TRS while the latter is related to
the dynamical breaking of TRS. At the outset, we would like
to comment from Eq. (6) that the mass term gets renormalized
by the driving m0 → m0 + m1/T . Therefore, the topological
phase boundary thus got renormalized. Hence, MCMs can
be found when |m0 + m1/T | < tx + ty with �(k) �= 0 and
Bx �= 0. Similar to the static case, here also for the Floquet
case the magnetic field allows us to tune the bulk gap which

is introduced by the superconducting order parameter �(k).
This would lead to analytical handling which we describe
below in terms of the low energy effective model. In the pres-
ence of �, interestingly, we find HFlq continues to preserve the
antiunitary PHS generated by C. This antiunitary symmetry is
essential to localize the MCMs at zero energy associated with
the effective Hamiltonian [Eq. (6)]. Here, we would like to
emphasize that we make use of the high-frequency Hamilto-
nian [Eq. (6)] only to corroborate the existence of the dressed
corner modes which we obtain from the exact diagonalization
of the Floquet operator U (T ) [Eq. (3)] (see Fig. 1).

B. Floquet corner mode

Having established the possible route to an analytical un-
derstanding of the emergence of MZMs, we here numerically
show their existence in the 2D FSOTSC phase that is char-
acterized by the presence of Floquet MCMs. To be precise,
we find the signature of dynamical MCMs that appear in the
Floquet LDOS as shown in Fig. 2. We know U (T )|φm〉 =
exp(−iμmT )|φm〉, where |φm〉 is the Floquet quasienergy
states corresponding to the Floquet quasienergy μm. To cal-
culate the LDOS, we numerically diagonalize the Floquet
operator U (T ) [in Eq. (3)] in the open boundary condition
(OBC). Here, we consider the Floquet eigenmodes |φm〉’s as-
sociated with μm ≈ 0 (within numerical accuracy) to compute
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FIG. 2. (a) The behavior of LDOS, associated with the
MCMs at μm = 0, is demonstrated for Bx = 0 considering
finite geometry. The inset exhibits the Floquet quasienergy
spectrum μm as a function of m where eight MZMs are
observed. Here, Lx = Ly = 25, tx = ty = λx = λy = 1.0, m0 = 2.5,
� = 0.6, m1 = −0.4, T = 0.419. (b) LDOS in finite geometry and
eigenvalue spectrum (inset) are depicted for Bx = 0.3. Here four
MZMs appear at quasienergy μm = 0. The number of MCMs at
μm = 0 can be reduced to half upon the introduction of the Zeeman
field.

the LDOS of these zero-energy states. These MCMs can be
easily distinguished from the gapped bulk modes. Note that
the 2D SOTSC phase hosting MCMs has been very recently
studied in static [23,31,32,36] and Floquet driven [61,70]
cases with different driving protocols.

We consider two cases: In the first case, we set the
amplitude of the in-plane magnetic field, Bx = 0, and the
corresponding LDOS is shown in Fig. 2(a). One can identify
from the inset of Fig. 2(a) that there exist eight MCMs, i.e.,
two MZMs per corner. While for Bx �= 0, we obtain four
MCMs, i.e., one MZM per corner as depicted in the inset of
Fig. 2(b). One can thus infer from Fig. 2(a) that two MZMs
sharing the same corner annihilate each other to give rise to
an electronic corner mode which may lead to a weak FSOTSC
phase. Interestingly, in Fig. 2(b) the applied in-plane magnetic
field yields only one MZM per corner carrying a signature
of strong FSOTSC phase [70]. Moreover, the localization
properties of these MCMs are significantly modified with the
introduction of the Zeeman field. From the weight structure of
MCMs as observed in LDOS, it is evident that the localization
length remains the same in the x and y direction for Bx = 0.
Finite Bx breaks this symmetry of localization length and the
weight becomes less along the y direction as compared to the x
direction. The introduction of By instead of Bx does not change
these properties. We discuss more regarding this in the latter
part of the paper.

C. Low energy edge theory

Here, we turn ourselves to the low energy edge theory to
corroborate the findings of the MCMs. We begin by expanding
the effective Hamiltonian in the high-frequency limit [Eq. (6)]
around the � = (0, 0) point as

HFlq,� ≈
(

m′ − tx
2

k2
x − ty

2
k2

y

)
�1 + λxkx�2 + λyky�3

− �

2

(
k2

x − k2
y

)
�4 + Bx�5 + m1

T
�1 + m1λxkx�21

+ m1λyky�31 − m1�

2

(
k2

x − k2
y

)
�41, (7)

where m′ = (m0 − tx − ty), �21 = −σyszτz, �31 = σx, and
�41 = σzsyτx. For a demonstrative example, we present the
analytical solution for edge-I. We consider here the open
(periodic) boundary condition along the x (y) direction. We
rewrite HFlq,� = H0(−i∂x ) + Hp(−i∂x, ky ) by replacing kx →
−i∂x and neglecting k2

y term. We thus obtain

H0 =
(

m − tx
2

∂2
x

)
�1 − iλx∂x �2,

Hp = λyky�3 + �

2
∂2

x �4 + Bx�5 − im1λx∂x �21

+ m1λyky�31 + m1�

2
∂2

x �41. (8)

Here, we consider the pairing amplitude � and the amplitude
of the in-plane magnetic field Bx to be small and treat them as
small perturbation [23,32,70]. The mass term m = (m′ + m1

T )
is considered to be less than zero. Assuming � to be the zero-
energy eigenstate of H0 and following the boundary condition
�(x = 0) = �(x = ∞) = 0, we obtain

�α = |Nx|2e−K1x sinK2x eikyy�α, (9)

where K1 = λx
tx

, K2 =
√

|m
tx
| − K2

1 , |Nx|2 = 4K1(K2
1+K2

2 )
K2

2
, and

�α is an eight-component spinor satisfying σyszτz�α = −�α .
Our chosen basis reads

�1 = |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

�2 = |σy = −1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,
(10)

�3 = |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

�4 = |σy = +1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 .

The matrix element of Hp in this basis can be written as

HEdge
I,αβ =

∫ ∞

0
dx �†

α (x)Hp(−i∂x, ky)�β (x). (11)

Thus, we obtain the effective Hamiltonian for the edge-I as

HEdge
I = −λykysz + MIsyτy, (12)

where MI = |m�
tx

|. Similarly, for edge-II, III, and IV, one can
obtain the effective Hamiltonian as

HEdge
II = λxkxsz − MIIsyτy − Bxsxτz,

HEdge
III = −λykysz + MIIIsyτy, (13)

HEdge
IV = λxkxsz − MIVsyτy − Bxsxτz.

where MII = |m�
ty

|, MIII = MI, and MIV = MII. Therefore, the
low energy effective Hamiltonian written in the edge coordi-
nate j is given by the compact form as

HEdge
j = −iλ( j)sz∂ j + M( j)syτy − B( j)sxτz, (14)

with λ( j) = {−λy, λx,−λy, λx}, M( j) = {MI,−MII,

MIII,−MIV}, and B( j) = {0, Bx, 0, Bx}. Note that one can
consider By instead of Bx; however, the above results do not
change qualitatively. Now to proceed further we study two
cases.
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1. Case I: Bx = 0

First, we turn off the in-plane magnetic field Bx. The edge
Hamiltonian HEdge

j can be decomposed into two independent
blocks as

HEdge
j = Hτy=+1 ⊕ Hτy=−1, (15)

where

Hτy=+1 = −iλ( j)sz∂ j + M( j)sy,

Hτy=−1 = −iλ( j)sz∂ j − M( j)sy. (16)

We obtain domain walls for both these blocks τy = ±1 as
the mass term M( j) changes its sign between two adjacent
edges; from edge-I, III to edge-II, IV. In terms of the sys-
tem parameters the Dirac mass changes from |m�

tx
| to −|m�

ty
|.

Consequently, one finds two MZMs per corner [see Fig. 2(a)];
each block is giving rise to one MZM per corner. Therefore,
one finds the origin of MCMs at each corner as obtained from
the above low-energy edge theory. The dynamical breaking of
TRS is only thus able to generate a weak FSOTSC phase (see
text for discussion).

2. Case II: Bx �= 0

Incorporating the Zeeman field Bx �= 0, in τx = sz sub-
space, the last term in Eq. (14) can be written as B( j)sxτz →
∓B( j)sy for the τy = ±1 block. The edge Hamiltonian
HEdge

j = Hτy=+1 ⊕ Hτy=−1 thus takes the following form upon
decomposing into two independent blocks as

Hτy=+1 = −iλ( j)sz∂ j + D( j)sy,

Hτy=−1 = −iλ( j)sz∂ j − D′( j)sy, (17)

with D( j) = {DI, DII, DIII, DIV} = M( j) + B( j) and D′( j) =
{D′

I, D′
II, D′

III, D′
IV} = M( j) − B( j). Hence, one can eventu-

ally obtain two decoupled diagonal blocks with Dirac masses
in different edges as DI = |m�

tx
|, DII = −|m�

ty
| + Bx, DIII =

|m�
tx

|, and DIV = −|m�
ty

| + Bx; D′
I = DI , D′

II = −|m�
ty

| − Bx,

D′
III = DIII, and D′

IV = −|m�
ty

| − Bx. Therefore, we observe
that Bx can change the gap along edge-II and IV leaving edge-I
and III unaltered for both of these blocks. It is now quite
evident from Eq. (17) that Bx = |m�

ty
| (Bx = −|m�

ty
|) refers

to a special situation where edge-II and IV become gapless
for the τy = +1 (τy = −1) block. This is in sharp contrast to
the edge Hamiltonian without magnetic field as described in
Eq. (16) where all four edges are massive. In the present case
with magnetic field Bx = |m�

ty
| (Bx = −|m�

ty
|), the remaining

two edges become massive for the τy = +1 (τy = −1) block.
We consider only positive values of Bx, and due to that reason
we investigate two instances where Bx > |m�

ty
| and Bx < |m�

ty
|.

When we consider Bx > |m�
ty

|, D′( j) changes its sign from
edge-I (III) to edge-II (IV) while D( j) remains positive in
all four edges. Therefore, τy = +1 block becomes inactive
and remains always massive while τy = −1, being the only
active block, can lead to Jackie-Rebbi localized MCMs at zero
quasienergy. One can thus observe one MZM per corner as
depicted in Fig. 2(b). On the other hand, for Bx < |m�

ty
|, both

the blocks turn out to be active, i.e., mass changes its sign
between two adjacent edges. Hence the MZMs are supported

by both of these blocks. This would result in two MZMs per
corner similar to the LDOS as shown in Fig. 2(a). Therefore,
the explicit breaking of TRS by applying the magnetic field
appears to be more efficient to obtain the FSOTSC phase as
both weak (two MZM per corner) and strong (one MZM per
corner) phases can be explored simultaneously. By contrast,
the dynamical breaking of TRS without applying the magnetic
field only allows us to explore the weak FSOTSC phase. We
explain these phases more elaborately while discussing the
topological invariants.

D. Corner mode solution

1. Case I: Bx = 0

To obtain the analytical solution of the MCMs, residing
at the intersection between edge-I and II, we solve the corre-
sponding edge Hamiltonians for the zero-energy solution. At
edge-I, we assume a solution of the form

�C ∼ e−ξy(a1, a2, a3, a4)T̃ . (18)

Here, T̃ denotes the transpose. The eigenvalue equation for
�C acquires the following form⎛

⎜⎝
−iλyξ 0 0 −MI

0 −iλyξ MI 0
0 MI iλyξ 0

−MI 0 0 iλyξ

⎞
⎟⎠

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠ = 0. (19)

The secular equation for �C then reads

det

⎛
⎜⎝

−iλyξ 0 0 −MI

0 −iλyξ MI 0
0 MI iλyξ 0

−MI 0 0 iλyξ

⎞
⎟⎠ = 0. (20)

Solving Eq. (20), we find four solutions for ξ as

ξ =
{
−MI

λy
,−MI

λy
,

MI

λy
,

MI

λy

}
. (21)

Given the fact that �C must vanish at y → ∞, there-
fore, we obtain two linearly independent solutions for edge-I,
�I,1

C = (1, 1, i,−i)T̃ and �I,2
C = (1,−1,−i,−i)T̃ . Thus, �C

can be expanded as

�C ∼ αI e− MI
λy

y
�I,1

C + βI e− MI
λy

y
�I,2

C . (22)

Here, αI and βI are the normalization factors for edge-I. Sim-
ilarly, for edge-II with αII and βII being the normalization
factors, we obtain

�C ∼ αII e− MII
λx

x�II,1
C + βII e− MII

λx
x�II,2

C , (23)

where �II,1
C = (1, 1, i,−i)T̃ and �II,2

C = (1,−1,−i,−i)T̃ .
Considering the wave function �C to be continuous at the
interface, i.e., at x = y = 0, we obtain αI = αII = α and βI =
βII = β. Hence, the wave function for the MCMs becomes

�C ∼ α e− MI
λy

y
�I,1

C + β e− MI
λy

y
�I,2

C : edge-I,

�C ∼ α e− MII
λx

x�I,1
C + β e− MII

λx
x�I,2

C : edge-II. (24)

The localization length in the x (y) direction becomes
λx/MII (λy/MI). This clearly suggests that localization lengths
of MCMs are dependent on the strength of hopping, spin-orbit
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coupling, mass, and proximity induced superconducting gap
function. In the present case, choice of tx = ty and λx = λy

leads to the fact that localization length becomes uniform
in the x and y direction as observed in the Floquet LDOS
[see Fig. 2(a)]. More importantly, one can observe that there
exist two MZMs at each corner corroborating our numerical
findings as shown in the inset of Fig. 2(a). The presence of two
MCMs suggests that they would annihilate each other leaving
an electronic state at the corner. The dynamical breaking of
TRS thus leads to a weak FSOTSC phase as each corner is
occupied by two MCMs.

2. Case II: Bx �= 0

Here we investigate the solutions for the MCMs in the pres-
ence of Bx. To begin with, we assume Bx > MII. We proceed
as before and obtain the following solutions for edge-I and
II as

�C ∼ αI e− MI
λy

y
�I,1

C + βI e− MI
λy

y
�I,2

C : edge-I,

�C ∼ αII e− Bx−MII
λx

x�II,1
C + βII e− Bx+MII

λx
x�II,2

C : edge-II, (25)

where �I,1
C = (1, 1, i,−i)T̃ , �I,2

C = (1,−1,−i,−i)T̃ , �II,1
C =

(1,−1, i, i)T̃ , and �II,2
C = (1, 1, i,−i)T̃ . Upon matching �C at

the boundary, we obtain αI = βII = α and βI = αII = 0. The
final solution becomes

�C ∼ α e− MI
λy

y
�I,1

C : edge-I,

�C ∼ α e− Bx+MII
λx

x�I,1
C : edge-II. (26)

In this case, the localization lengths are given by λx/(Bx +
MII ) (λy/MI) along the x (y) direction. Thus the MCMs decay
differently along the two directions into the bulk. This is also
evident from the Floquet LDOS where localization of MZMs
at the corners are stronger in the y direction as compared
to the x direction [see Fig. 2(b)]. Moreover, there exists one
MCM per corner, as shown in the inset of Fig. 2(b). The
presence of one MCM suggests that it corresponds to a strong
FSOTSC phase when Bx �= 0. This phase cannot be realized
in the presence of only a periodic kick drive, i.e., when TRS
is broken dynamically.

Furthermore, when Bx < MII, we continue to obtain two
MZMs per corner like the previous case with Bx = 0, except
for the modification in localization length that is modulated
by Bx. The final solution for this case reads

�C ∼ α e− MI
λy

y
�I,1

C + β e− MI
λy

y
�I,2

C : edge-I,

�C ∼ α e− Bx+MII
λx

x�I,1
C + β e− MII−Bx

λx
x�I,2

C : edge-II. (27)

Therefore, the incorporation of Zeeman field allows one to
explore both the weak and strong phases depending on the
values of Bx.

E. Topological characterization of MCMs

Having understood the wave functions associated with the
MCMs, we would now like to characterize these FSOTSC
phases with appropriate topological invariants. We compute
two invariants, namely FWS and FQM, to identify the under-
lying topological nature of these MCMs. For the calculation

FIG. 3. (a) Floquet Wannier spectrum (FWS) is demonstrated for
Bx = 0 and the inset manifests the same for Bx = 0.3. The values of
all other parameters remain the same as in Fig. 2. Connecting with
Fig. 2, we can comment that eight (four) MCMs correspond to four
(two) FWS quantized at 0.5. We refer the phase with eight and four
MCMs as weak and strong FSOTSC phases, respectively. (b) Floquet
quadrupole moment (FQM), which is only quantized at 0.5 for the
strong FSOTSC phase, is demonstrated in the m1-ω plane where
m1 and ω are the amplitude of the drive and the driving frequency,
respectively.

of FWS, we construct the Wilson loop operator [14] as

Wx = Fx,kx+(Nx−1)�kx · · · Fx,kx+�kx Fx,kx , (28)

with [Fx,kx ]mn = 〈φn,kx+�kx |φm,kx 〉, where �kx = 2π/Nx [Nx

being the number of discrete points considered inside the
Brillouin zone (BZ) along kx] and |φm,kx 〉 is the mth occupied
Floquet quasistate in the semi-infinite geometry (consider-
ing periodic boundary condition (PBC) and open boundary
condition (OBC) along the x and y direction, respectively).
One can obtain |φm,kx 〉 by diagonalizing the effective Floquet
Hamiltonian in the high-frequency limit [Eq. (6)]. Thus we
obtain the Wannier Hamiltonian as

HFlq
Wx

= −i lnWx, (29)

whose eigenvalues 2πν
Flq
x correspond to the FWS. Similarly,

one can find ν
Flq
y by considering PBC (OBC) along the y (x)

direction.
The quantized nature of Wannier spectra at 0.5 character-

izes the SOTSC phase in our case. In the FSOTSC phase, one
expects to obtain a quantized value pinned at 0.5 similar to the
static counterpart. In the first case for Bx = 0, we obtain four
eigenvalues at 0.5 as shown in Fig. 3(a), whereas for Bx �= 0,
one obtains such two eigenvalues only by diagonalizing HFlq

Wx

[see the inset of Fig. 3(a)]. One can thus identify the FSOTSC
phase, hosting two MCMs per corner in the absence of the
Zeeman field (Bx = 0), as the weak phase where there exist
two pairs of FWS quantized at 0.5. On the other hand, in the
presence of the Zeeman field (Bx �= 0), the FSOTSC phase
becomes a strong one where a single MZM is localized per
corner, leading to a single pair of FWS quantized at 0.5.
Therefore, one can directly correlate the wave function of
MZMs at the corner with the topological signature of the
invariant FWS. In this way, we can distinguish between the
strong and weak FSOTSC phases that are, respectively, asso-
ciated with two and four FWS eigenvalues stabilized at 0.5.

In order to calculate the FQM, being another in-
variant for the quantification of the topological phases,
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we numerically diagonalize the exact Floquet operator
[Eq. (3)]. We then construct the Floquet many-body
ground state �0,F by columnwise marshalling the quasis-
tates according to their quasienergy −ω/2 � μm � 0: �0,F =∑

m∈μm�0 |φm〉〈φm| [56,62]. Now QFlq
xy (r) can be defined, con-

sidering the geometrical number operator q̂xy = n̂(r)xy/L2

with n̂(r) being the number operator at r = (x, y), as follows

QFlq
xy = Re

[
− i

2π
Tr

(
ln

(
�

†
0,F exp

[
2π i

∑
r

q̂xy(r)
]
�0,F

))]
.

(30)

For Bx �= 0, we obtain QFlq
xy ≡ mod(QFlq

xy , 1) = 0.5. On the
other hand, when Bx = 0, QFlq

xy turns out to be zero, depict-
ing weak topological nature of the phase. Therefore, similar
to the FWS, we here also find finite (vanishing) FQM for
strong (weak) FSOTSC phases. We then explore the dynamic
FSOTSC phase for a range of the driving frequency ω and
the driving amplitude m1 where QFlq

xy = 0.5. This is shown
in Fig. 3(b). This clearly suggests that the emergent strong
phase is indeed an outcome of nonequilibrium dynamics as the
underlying static model remains in a nontopological phase.

III. MAJORANA HINGE MODES IN 3d

In this section we generalize our earlier findings of
FSOTSC phase in the case of 3D.

A. Model Hamiltonian and driving protocol

1. Model

In 3D, we begin by writing down the Hamiltonian
in the Bogoliubov-de Gennes (BdG) form as HBdG =∑

k �
†
kH3D

0 (k)�k, with �k = (ck,a↑,−c†
−k,a↓, ck,a↓, c†

−k,a↑,

ck,b↑,−c†
−k,b↓, ck,b↓, c†

−k,b↑)T̃ , and H3D
0 (k) is given by

H3D
0 = ε(k)�1 + λx sin kx�2 + λy sin ky�3 + λz sin kz�4

+�(k)�5 + Bx�6 + By�7 + Bz�8 ≡ N(k) · �,

(31)

where ε(k) = (m0 − tx cos kx − ty cos ky − tz cos kz ), �(k) =
�(cos kx − cos ky) and �1 = σzτz, �2 = σxsxτz, �3 = σxsyτz,
�4 = σxszτz, �5 = τx, �6 = sx, �7 = sy, and �8 = sz. Similar
to the Hamiltonian [Eq. (1)] in the 2D case, H3D

0 respects
both TRS T = isyK and PHS C = syτyK in the absence of
Zeeman field, i.e., Bx = By = Bz = 0. In the absence of the
superconducting term �(k) = 0, the model supports zero-
energy surface states for |m0| < tx + ty + tz. While for |m0| >

tx + ty + tz, the models becomes nontopological (trivial band
insulator). This model thus supports the first order topological
phase in the absence of �(k). Interestingly, the model be-
comes a PHS protected SOTSC, hosting MKPs at the hinges
along the z direction, in the presence of �(k) when |m0| <

tx + ty + tz. In the case of the 2D system [Eq. (1)], the SOTSC
phase supports MCMs; here for the 3D system [Eq. (31)],
it hosts Majorana hinge modes (MHMs). Upon breaking
TRS by introducing magnetic field Bx �= 0, the degeneracy of
MKPs gets lifted and there exists only one MZM per hinge.
We note that By does the same job as done by Bx. In contrast,
Bz is not able to lift the degeneracy of MKPs. In general, the
MHMs are observed along the c direction when the SC or-
der has the form �(k) = cos ka − cos kb with a, b, c = x, y, z.
The MKPs along the hinges in the c direction remain unaf-
fected by the magnetic field Bc. On the other hand, for |m0| >

tx + ty + tz, the system continues to remain in the nontopo-
logical phases even with �(k) �= 0 and Bx �= 0. Therefore, it
would be interesting to study the generation of the FSOTSC
phase in the presence of � by kicking the mass term while the
underlying static system remains in a nontopological phase.
Our aim is to generate the Floquet MHMs (FMHMs) and their
topological characterization in 3D geometry.

2. Driving protocol and Floquet operator

We consider the same driving protocol in the form of peri-
odic kick as followed in the 2D case where

m(t ) = m1

∞∑
r=1

δ(t − rT ). (32)

Here, T is the period of the drive and m1 is the amplitude of
the drive. With the periodic kick [see Eq. (32)], the Floquet
operator reads

U (T ) = TO exp

[
−i

∫ T

0
dt

(
H3D

0 (k) + m(t )�1
)]

= exp(−iH3D
0 (k)T ) exp(−im1�1). (33)

We can cast the Floquet operator U (T ) in a more compact
form as

U (T ) = CT (p − iq�1) − iST

8∑
j=1

(n j� j + mj� j1), (34)

where CT = cos(|N(k)|T ), ST = sin(|N(k)|T ), p = cos m1,
q = sin m1, n j = Nj (k) cos m1

|N(k)| , mj = Nj (k) sin m1

|N(k)| , and � j1 =
1
2i [� j, �1] with j = 2, 3, 4, 5, 6, 7, 8. One can find the general
form of the effective Hamiltonian as

HFlq = ξk

sin ξkT

[
sin(|N(k)|T ) cos m1

8∑
j=1

r j� j + cos(|N(k)|T ) sin m1�1 + sin(|N(k)|T ) sin m1

8∑
j=2

r j� j1

]
, (35)

with ξk = 1
T cos−1 [cos(|N(k)|T ) cos m1], r j = Nj (k)

|N(k)| . In the high-frequency limit, i.e., T → 0 and m1 → 0, neglecting the higher
order terms in T and m1, we find the effective Hamiltonian as

HFlq ≈ H0(k) + m1

T
�1 + m1

8∑
j=2

r j� j1. (36)
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FIG. 4. (a) The LDOS associated with the MZMs clearly exhibits
the emergence of the 1D Floquet MHMs in finite geometry. The
LDOS structure remains qualitatively invariant in the presence of
an in-plane Zeeman field. We choose the other parameter values as
tx = ty = tz = 2.0, λx = λy = λz = 1.0, m0 = 5.5, m1 = −0.3, and
T = 0.393. (b) The Floquet quasienergy spectra is shown for the
3D FSOTSC in real space without the Zeeman field. There exist
eight MHMs (due to the finite size effect, these modes do not appear
exactly at zero energy) referring to the fact that this is a weak phase
where each hinge is occupied by two MZMs. The finite-size effect
is investigated in the inset I1 showing the gap as an exponentially
falling function of the system size in one real space direction as �G ∼
β exp(−αL) with α = 0.127283 and β = 0.769069. With Zeeman
field Bx = 0.4, we depict (inset I2) the emergence of four MHMs,
i.e., one MZM per hinge. The Zeeman field can thus transform a
weak FSOTSC to a strong FSOTSC phase.

In Eq. (36), terms associated with � j1 are the new terms
generated by the drive. Note that these new terms break TRS
T present in the static Hamiltonian, although HFlq continues
to preserve the antiunitary PHS C. Similar to the 2D case as
described by Eq. (6), here also the extra terms r j� j1 break the
TRS of the model even when Bx = By = Bz = 0. The Hamil-
tonian [Eq. (36)] shares similar characteristics as shown by the
2D Hamiltonian [Eq. (6)]. Here also the mass term is renor-
malized to m0 → (m0 + m1/T ) and the topological phase
boundary becomes accordingly modified. The dynamical (ex-
plicit) breaking of TRS would lead to an interesting study as
far as the weak (strong) FSOTSC phases are concerned. As
noted in the static case, the in-plane Zeeman field Bx or By

can lead to an interesting effect for the Floquet case also.

B. Floquet Majorana hinge mode

Here, we numerically diagonalize the Floquet operator
[Eq. (33)] in real space geometry to manifest the signature
of the 1D propagating MHMs along the z direction in the
LDOS spectrum. Like before, we consider two cases. When
the Zeeman field B = 0, we obtain eight eigenvalues close to
zero energy like the 2D case as shown in Fig. 4(b). However,
when we incorporate Bx �= 0 or By �= 0, we obtain four modes
near zero energy [see Fig. 4(b)I2]. Interestingly, the transverse
magnetic field Bz does not give rise to these kinds of phe-
nomena. However, the finite-size effect is very prominent here
that we depict in the inset I1 of Fig. 4(b). The finite-size gap
�G vanishes exponentially with L: �G ∼ β exp(−αL). This
ensures the fact that MHMs are indeed zero-energy FSOTSC
states in 3D. We show the LDOS explicitly in Fig. 4(a) where
one can observe that a finite spectral weight is uniformly
distributed over the four hinges of the 3D cubic system.

C. Low energy surface theory

We here investigate the low-energy theory for the 3D case
to search for the existence of the hinge states, originated due
to the periodically kicked mass term, in the underlying static
Hamiltonian [Eq. (31)]. For simplicity we choose tx = ty =
tz = t and λx = λy = λz = λ. We expand the high-frequency
effective Hamiltonian [Eq. (36)] around the � = (0, 0, 0)
point and obtain

H3D
Flq,� =

(
m′ + t

2
∂2

x + t

2
∂2

y + t

2
∂2

z

)
�1 + λkx�2

+ λky�3 + λkz�4 − �

2

(
k2

x − k2
y

)
�5 + m1

T
�1

+ m1λkx�21 + m1λky�31 + m1λkz�41

− m1�

2

(
k2

x − k2
y

)
�51 + Bx�6 + By�7 + Bz�8,

(37)

where m′ = (m0 − 3t ) and �21 = −σysx, �31 = −σysy, �41 =
−σysz, and �51 = −σzτy. We choose a surface perpendicular
to the xy plane, with a deviation from the yz plane by an angle
θ . In order to cast the above equations in a convenient form
we translate to a rotated frame defined by k1 = − sin θ kx +
cos θ ky, k2 = kz, and k3 = cos θ kx + sin θ ky. This rotation
transforms x, y, z → y, z, x for θ = 0 while for θ = π/2,
x, y, z → −x, z, y. We now consider OBC in the x3 direc-
tion and replace k3 → −i∂3. One can hence divide Eq. (37)
into two parts as

H0 =
(

m − t

2
∂2

3

)
σzτz − iλ∂3 σx(sx cos θ + sy sin θ )τz,

Hp = λk1σx(−sx sin θ + sy cos θ )τz + λk2σxszτz

− �(θ )

2
∂2

3 τx + im1λ∂3σy(sx cos θ + sy sin θ )

− m1λk1σy(−sx sin θ + sy cos θ ) − m1λk2σysz

+ m1�(θ )

2
∂2

3 σzτy + Bxsx + Bysy + Bzsz, (38)

where m = (m′ + m1
T ) and �(θ ) = �(sin2 θ − cos2 θ ). We

consider the following transformation for spins⎛
⎝sx

sy

sz

⎞
⎠ =

⎛
⎝− sin θ cos θ 0

cos θ sin θ 0
0 0 1

⎞
⎠

⎛
⎝s1

s3

s2

⎞
⎠ (39)

such that Eq. (38) acquires a compact form as we notice for
the 2D case. Here, s1, s2, and s3 are Pauli matrices. Therefore,
Eq. (38) can be rewritten as

H0 =
(

m − t

2
∂2

3

)
σzτz − iλ∂3 σxs3τz,

Hp = λk1σxs1τz + λk2σxs2τz − �(θ )

2
∂2

3 τx + im1λ∂3σys3

− m1λk1σys1 − m1λk2σys2 + m1�(θ )

2
∂2

3 σzτy

+ Bx(−s1 sin θ + s3 cos θ ) + By(s1 cos θ + s3 sin θ )

+ Bzs2. (40)

We assume � to be the zero-energy solution of H0 with the
boundary condition �(x3 = 0) = �(x3 = ∞) = 0. We finally
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obtain the following wave function in the rotated frame as

�α = A e−K1x3 sin(K2x3) eik1x1+ik2x2 �α, (41)

where K1 = λ
t , K2 =

√
| 2m

t | − K2
1 , and A = 4K1(K2

1+K2
2 )

K2
2

and
�α is the eight-component spinor satisfying σys3�α = −�α .

�1 = |σy = +1〉 ⊗ |s3 = −1〉 ⊗ |τz = +1〉 ,

�2 = |σy = −1〉 ⊗ |s3 = +1〉 ⊗ |τz = +1〉 ,

�3 = |σy = +1〉 ⊗ |s3 = −1〉 ⊗ |τz = −1〉 ,

�4 = |σy = −1〉 ⊗ |s3 = +1〉 ⊗ |τz = −1〉 . (42)

The matrix element of Hp in the rotated frame within the
above basis reads

HSurf
αβ =

∫ ∞

0
dx3 �†

α (x3)Hp�β (x3). (43)

Therefore, we obtain the Hamiltonian for the surface in the
rotated frame to be

HSurf = λk1s3τy − λk2s3τx + M(θ )s1 − B(θ )τz. (44)

Here, M(θ ) = �(θ )|m
t | and B(θ ) = (Bx cos θ + By sin θ ). The

transverse magnetic field Bz does not appear in the surface
Hamiltonian referring to the fact that the in-plane magnetic
field plays an important role in determining the nature of the
FSOTSC phase. Interestingly, �(θ ) = −�(θ + π/2) result-
ing in M(θ ) to change its sign between two adjacent surfaces
under C4 rotation around the z axis. Consequently, one can get
hinge mode in the junction between the xz and yz plane. This
sign change of the mass term is shown in Fig. 4(a). We can
explicitly write down the surface Hamiltonian for the yz (xz)
surface by putting θ = 0 ( π

2 ) as

Hyz = λkys3τy − λkzs3τx − �

∣∣∣m

t

∣∣∣s1 − Bxτz,

Hxz = −λkxs3τy − λkzs3τx + �

∣∣∣m

t

∣∣∣s1 − Byτz. (45)

Let us now discuss the above surface Hamiltonian at length.
As compared to the edge Hamiltonian for edge a with ka only,
the surface Hamiltonian for the ab surface consists of ka and
kb. In the absence of magnetic field, �|m

t |s1 acts as a mass
in the Nambu space spanned by s3τx,y. This mass changes
its sign between two adjacent surfaces, namely yz and xz.
Both the blocks participate actively here as the mass term
uniformly appears in both of them. Thus two MZMs per hinge
are observed. On the other hand, in the presence of any of the
in-plane Zeeman field, mass terms become different in the two
blocks. This leads to a situation where one block can be made
active keeping the other block inactive. As a result, one MZM
per hinge can be observed. This behavior again resembles that
of the 2D case. Therefore, the dynamical and explicit breaking
of TRS imprints their signatures unanimously for 3D as well.

D. Hinge mode solution

Having obtained the low energy surface Hamiltonian, the
hinge Hamiltonian can be estimated by considering the PBC
(OBC) along (perpendicular to) the hinge direction. We thus
divide HSurf into two parts as

HS
0 = −iλ∂1s3τy + M(θ )s1 − B(θ )τz,

HS
p = −λk2s3τx. (46)

Here the superconducting order parameter and Zeeman field
are treated in the unperturbed Hamiltonian HS

0 . We solve HS
0

exactly and expand HS
p in the basis of HS

0 . For B = 0, we
obtain the Hamiltonian for the hinge mode (after replacing
k2 → kz) as

HHinge = −λkzτy. (47)

This manifests a propagating mode along the z direction.
Therefore, it is clear that dynamical breaking of TRS leads
to two solutions of MHMs with τy = ±1. Contrastingly for
Bx �= 0 or By �= 0, we obtain the solution as

HHinge = −λkzI, (48)

which only hosts a single MHM as the hinge Hamiltonian is
described by I. Similar to the 2D case, here also the explicit
breaking of TRS can lead to a situation different from the
dynamical breaking of TRS by the periodic kick drive. Hence,
one expects that without (with) magnetic field there exist two
MHMs (one MHM) per hinge along the z direction as shown
in the inset I2 of Fig. 4(b).

E. Floquet Wannier spectrum

To calculate FWS using Eq. (28), we write down the
Hamiltonian [Eq. (31)] in slab geometry, i.e., we consider
OBC in one direction while the other two directions continue
to satisfy PBC. For an x-directed slab (OBC along the x direc-
tion; PBC along the y and z direction), we can calculate ν

(x),Flq
z

(ν (x),Flq
y ) as a function of ky (kz). Since we obtain propagating

1D hinge mode in the z direction only, the spectrum of ν
(x),Flq
y

and ν
(y),Flq
x as a function of kz exhibits gapless nature, while

all other FWS remain gapped. We illustrate the representative
plots for FWS in Figs. 5(a) and 5(b). Focussing only at the
kz = 0 point, we show FWS as a function of the state index
at kz = 0 in Figs. 5(c) and 5(d). In the absence of the in-plane
Zeeman field, i.e., for weak FSOTSC phase, we obtain four
eigenvalues at 0.5 corresponding to the two MHMs per hinge
[see Fig. 5(c)]. In contrast, when we turn on the in-plane
Zeeman field Bx, i.e., for strong FSOTSC, we obtain two
eigenvalues at 0.5 [see Fig. 5(d)] corroborating one MHM
per hinge. We also calculate the FQM to further distinguish
between the weak and strong FSOTSC. To proceed, we write
the Floquet operator U (T ) [Eq. (33)] in rod geometry (con-
sidering PBC along the z direction, OBC along the x and y
direction). We then implement Eq. (30) to calculate the FQM
(QFlq

xy ) as a function of kz. We find that QFlq
xy = 0.5 (0) at kz = 0

for the strong (weak) phase [87].

IV. ROBUSTNESS OF HIGHER ORDER MAJORANA
MODES AGAINST DISORDER

Having investigated the topological classification of the
FSOTSC phases, we now focus on the robustness of these
phases in the presence of finite disorder. We first concentrate
on the 2D case. Instead of choosing m1 to be constant, we
consider m1 to be randomly distributed in between [−W

2 , W
2 ]

in an uncorrelated manner. Here, W is the strength of the
disorder. Note that, the disorder being random, we have taken
the average over 500 disorder configurations in our numerical
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FIG. 5. (a) We depict the FWS ν (x),Flq
z as a function of ky in the

slab geometry with OBC along the x direction and PBC along the
y, z directions. (b) We work in the same geometry as mentioned in
panel (a) but show ν (x),Flq

y as a function of kz. Since the hinge mode
propagates along the z direction, we obtain gapless FWS for ν (x),Flq

y .
(c) We show the FWS ν (x),Flq

y as a function of state number at kz = 0
for Bx = 0. In the inset one can clearly observe four eigenvalues at
0.5 refer to the weak FSOTSC phase. (d) We repeat (c) but with the
in-plane Zeeman field Bx �= 0. We obtain two eigenvalues at 0.5 as
shown in the inset refer to strong FSOTSC phase. The values of all
the parameters remain the same as in Fig. 4.

calculation. We analyze our results for two values of disorder
strengths, W = 0.1 and 0.4, while hopping and spin-orbit
coupling strength is fixed to unity. We first study the effect of
disorder on the weak phase hosting eight MCMs. For weak
disorder strength, W = 0.1, one does not observe any per-
ceptible difference from the clean case [see Fig. 6(a)]. To be
precise, the spectral weight of MCMs is uniformly distributed
among all four corners of the square lattice, i.e., the localiza-
tion length remains almost unaltered in the presence of weak
disorder, while for W = 0.4, we notice that the spectral weight
of some corner modes in LDOS becomes higher compared
to others as shown in Fig. 6(b). This nonuniform distribu-
tion of spectral weight among the corners thus suggests that
the strong disorder can substantially modify the localization
properties of these MCMs. However, it is noteworthy that
even strong disorder cannot lift the Majorana modes from
the zero energy as depicted in the inset of Figs. 6(a) and
6(b). This results in the fact that FWS continues to exhibit
similar behavior as compared to the clean case [see Figs. 7(a)
and 7(b)]. Therefore, weak FSOTSC phase can preserve its
signature in the presence of moderate disorder.

We also investigate the effect of moderate disorder in the
strong FSOTSC phase hosting four MZMs at the corners in
the presence of explicit TRS breaking Zeeman field. Since the
disorder does not break any further symmetry (except trans-
lational), we find that the effect of the disorder remains the

FIG. 6. (a) LDOS, associated with zero quasienergy states μm =
0, in finite geometry is demonstrated for Bx = 0 and the inset shows
the Floquet quasienergy spectrum for the same for the disorder
strength W = 0.1. (b) We repeat (a) with the disorder strength W =
0.4. (c),(d) We repeat (a) and (b) with Bx = 0.3, respectively. One
can clearly observe that the localization properties become modified
as the disorder strength increases substantially, otherwise for small
disorder, they remain the same as the clean case. The value of all
other parameters remains the same as in Fig. 2.

same as the earlier case with Bx = 0. The uniform (nonuni-
form) distribution of spectral weight of MZMs is observed for
W = 0.1 (0.4) as depicted in Figs. 6(c) and 6(d). These MCMs
are localized at zero energy always [see the inset of Figs. 6(c)
and 6(d)]. As a result, their topological protection remains
unaltered as noticed in the clean case. We find quantized FWS
for weak as well as moderate disorder strength [see the inset of

FIG. 7. (a) FWS is depicted for the case Bx = 0 when the dis-
order strength is chosen to be W = 0.1, while the same for the
case Bx = 0.3 is shown in the inset. (b) FWS is demonstrated with
the disorder strength W = 0.4 for Bx = 0 and Bx �= 0 (inset). One
can obtain an indication that upon increasing the disorder strength
substantially, the FWS might deviate from the quantized value 0.5.
However, for our chosen disorder strength (W < tx, ty, λx, λy) the
invariant behaves in a robust manner referring to the fact that these
FSOTSC phases are stable against moderate disorder. The value of
all the other parameters remains the same as chosen in Fig. 2.
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Figs. 7(a) and 7(b)]. It is important to mention that the FQM is
also quantized at a value 0.5, for such strength of the disorder
with Bx �= 0. This investigation with moderate disorder thus
clearly suggests that both weak and strong FSOTSC phases
are robust against moderate disorder. Having investigated the
effect of disorder and protection of topological properties in
2D, we believe the same line of argument would also hold for
3D.

V. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we provide a dynamical
prescription to generate the FSOTSC phase starting from a
2D/3D TI in close proximity to an unconventional d-wave
superconductor. We periodically kick the mass term to gen-
erate MZMs at the corners and hinges in 2D square and
3D cubic lattice geometry, respectively. Our aim here is to
investigate the effect of TRS breaking magnetic field on these
Floquet SOTSC phases as the initial (effective) Hamiltonian,
describing the static (driven) system which preserves (breaks)
the dynamical TRS. In 2D, we first consider our model in
the presence of periodically kicked mass term when Zeeman
field Bx = 0. Here, we find the FSOTSC phase harboring eight
MZMs, i.e., two MZMs per corner. In order to characterize
this FSOTSC phase, we compute two topological invariants,
namely FWS and FQM. We find that this phase corresponds to
four FWS quantized at 0.5 while FQM vanishes; we identify
this FSOTSC phase as the weak one. Upon introduction of
an explicit TRS breaking Zeeman field Bx �= 0, we find four
MZMs, i.e., one MZM per corner. We here obtain two quan-
tized FWS at 0.5 and quantized FQM referring to the strong
nature of the phase. We analytically support our numerical
findings, as obtained by diagonalizing the Floquet operator
in OBC, with the help of effective low-energy edge theory
and MCMs solutions. The low-energy theory can successfully
predict the nature of the SOTSC phase whether it is strong or
weak in terms of the spinor states of MZMs. We further intro-
duce moderate disorder in the driving amplitude to study the
stability of the FSOTSC phase against disorder. We find that
the FSOTSC is stable against the moderate strength of disor-
der. However, the localization property of the MZMs depends
on the disorder strength. We also generalize our theory based

on the 3D model and identify the weak (strong) FSOTSC
phase via FWS hosting MHMs. In this case, we derive the low
energy surface theory and analytical solutions of the MHMs
therein. The effect of the disorder remains similar to in the 2D
case.

As far as experimental feasibility of our setup is concerned,
d-wave superconductivity in TI can be induced via the prox-
imity effect (e.g., Bi2Sr2CaCu2O8+δ) [88] with an induced
gap amplitude � ∼ 15 meV [88]. It has been theoretically
[89] and experimentally [90] demonstrated that the topolog-
ical properties of (Bi,Sb)2Te3 thin films can be tuned by the
quantum confinement, i.e., varying the number of quintuple
layers. It is indeed possible to tune the mass term in the un-
derlying static model which might pave the way to realize the
dynamical manipulation of the mass term in the proximized
topological superconductor. In recent times, experimental ad-
vancements on the pump-probe techniques [53,75,76] have
enabled one to observe Floquet topological insulators [75] and
anomalous Hall effect in graphene [91]. Therefore, we believe
that the signature of MCMs and MHMs may be possible to
achieve via pump-probe-based time-resolved transport [e.g.,
local scanning tunneling microscope (STM)] measurements
[92–94] for an in-plane magnetic field Bx ∼ 7–8 T, amplitude
of the drive m1 ∼ 100 meV, and period T ∼ 2 fs.

At last, we would like to comment on robustness of these
Floquet MZMs in HOTSC phases under periodic driving as
far as heating and dissipation are concerned. Based on the
recent theoretical and experimental investigations on quantum
many-body systems [95,96], the heating is suppressed in the
prethermal window where our findings can be tested with dis-
sipationless MZMs associated with the periodic steady state.
We work in the high frequency regime away from the reso-
nance points. This further enables us to minimize the heating
effect [97]. We therefore believe that our theoretical findings
do not suffer from heating issue and dissipation.
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