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Abstract
Topological insulators (TIs) are a new class of materials that resemble ordinary band insulators
in terms of a bulk band gap but exhibit protected metallic states on their boundaries. In this
modern direction, higher-order TIs (HOTIs) are a new class of TIs in dimensions d> 1. These
HOTIs possess (d− 1)-dimensional boundaries that, unlike those of conventional TIs, do not
conduct via gapless states but are themselves TIs. Precisely, an nth order d-dimensional
higher-order TI is characterized by the presence of boundary modes that reside on its
dc = (d− n)-dimensional boundary. For instance, a three-dimensional second (third) order TI
hosts gapless (localized) modes on the hinges (corners), characterized by dc = 1(0). Similarly, a
second-order TI (SOTI) in two dimensions only has localized corner states (dc = 0). These
higher-order phases are protected by various crystalline as well as discrete symmetries. The
non-equilibrium tunability of the topological phase has been a major academic challenge where
periodic Floquet drive provides us golden opportunity to overcome that barrier. Here, we
discuss different periodic driving protocols to generate Floquet HOTIs while starting from a
non-topological or first-order topological phase. Furthermore, we emphasize that one can
generate the dynamical anomalous π-modes along with the concomitant 0-modes. The former
can be realized only in a dynamical setup. We exemplify the Floquet higher-order topological
modes in two and three dimensions in a systematic way. Especially, in two dimensions, we
demonstrate a Floquet SOTI (FSOTI) hosting 0- and π corner modes. Whereas a
three-dimensional FSOTI and Floquet third-order TI manifest one- and zero-dimensional hinge
and corner modes, respectively.
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1. Introduction

The advent of the integer quantum Hall effect (IQHE) by von
Klitzing in 1980 [1] introduces the notion of topology in the
field of condensed matter physics. Soon after the discovery of
IQHE, the topological characterization of the quantum Hall

∗
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states (QHS) is predicted by Thouless, Kohmoto, Nightingale,
and den Nijs, in terms of the quantized Hall conductance
[TKNN invariant] also known as Chern number [2]. The QHS
hosts gapless chiral edge modes only at the boundaries of
the system. The topological non-triviality in the QHS ori-
ginates from the fact that the appearance of the boundary
modes does not depend on the minute details of the system;
instead, one continues to observe these modes as long as an
energy gap sustains between the consecutive Landau levels.
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Classically, one may understand the origin of the edge-states
from the skipping motions of the electrons along the edges of
the system [3].

The generation of QHS depends upon the externally-
applied high magnetic field, which breaks discrete time-
reversal symmetry (TRS). In 1988, Duncan Haldane, in his
seminal paper, proposed an elegant alternative way to real-
ize IQHE employing two-dimensional (2D) hexagonal lattice
without any net magnetic flux per unit cell [4]. The TRS break-
ing mechanism in this hexagonal setup is engineered by intro-
ducing an imaginary second nearest-neighbor hopping term.
Employing Bloch band theory, one can find out the band struc-
ture of the system, and it turns out that the system is insulating
in bulk. However, when a boundary is imposed on the sys-
tem i.e. considering the finite size of the system along at least
one direction, it exhibits gapless chiral edge states. Also, the
topological nature of the non-trivial bulk bands can be char-
acterized by a non-zero TKNN invariant/ Chern number [4].
Due to the chiral nature, the edge modes can propagate only
along one direction. Thus, these edge-states are robust against
disorder as back-scattering is prohibited due to the unavailab-
ility of oppositely moving states. This phenomenon of gener-
ating non-trivial TRS-breaking topological states without an
external magnetic field is also known as the quantum anomal-
ous Hall (QAH) effect [5].

During the past two decades, researchers in this area star-
ted asking the interesting question of realizing a quantum
Hall-like state without breaking TRS. In this direction, Kane
and Mele [6–9], and Bernevig, Hughes and Zhang [8, 10]
independently proposed the elegant idea of quantum spin
Hall (QSH) effect. In a QSH insulator (QSHI) or 2D topo-
logical insulator (TI), the spin–orbit coupling (SOC) plays
the role of the magnetic field that is momentum dependent.
However, SOC does not break TRS. Moreover, the QSHI
exhibits spin currents instead of charge currents in terms of
quantized spin-Hall conductance. Due to the presence of TRS,
it is obvious to have Kramers’ degeneracy. Thus, a QSHI
exhibits two counter-propagating edgemodes per edge i.e. two
opposite spins propagate along opposite directions (left mover
and right mover), and this phenomenon is known as spin-
momentum locking [11]. As a result, the total charge current in
a 2D TI becomes zero. However, one can still obtain a quant-
ized spin current, which is the QSH effect [12].

Soon after the discovery of 2D TI, the bulk-boundary
correspondence (BBC) is generalized for a three-
dimensional (3D) system, and the idea of a 3D TI is for-
mulated [3, 13–15]. In three dimensions, the TI exhibits a 2D
surface state with gapless Dirac cones while the bulk remains
insulating. Theoretically, Bi1−xSbx, α-Sn and HgTe under uni-
axial strain, Bi2X3 (X= Se,Te), Sb2Te3, etc are proposed to be
the probable material platform to manifest 3D TI [3, 16, 17].
A few experimental observations have been put forward illus-
trating the evidence of 3D TI hosting gapless surface Dirac
cones in Bi1−xSbx [18], Bi2X3 (X = Se,Te) [19, 20], etc. In
three dimensions, however, there is a possibility of realizing
two kinds of TIs- strong TI with an odd number of Dirac
cones on the surface and weak TI with an even number of

Dirac cones on the surface [13]. The weak TIs are not robust
against disorder due to the possibility of inter-node scattering
and as such are equivalent to the band insulators [13].

The breaking of TRS in QHS facilitates the computation of
the TKNN invariant or the Chern number (C) for topological
characterization of such system [2]. However, when the TRS
is preserved, the total Chern number vanishes [21]. Thus, the
Chern number can not be employed to characterize the QSH
phase, which preserves TRS. Although one may still be able to
define the spin Chern numberCS if the z-component of the spin
(Sz) still remains preserved such that CS = (C↑ −C↓)/2; with
C↑ (C↓) representing the Chern number of the up (down) spin-
sector. However, when Sz is not preserved, one can, however,
find out a Z2 topological characterization [7, 8, 13, 14, 16, 21,
22]. TheZ2-invariant is computed employing the time-reversal
polarization of the bulk bands [21]. For 2D TI, the Z2 index
ν0 takes the values 0 and 1 for the topological and the non-
topological case, respectively [7, 8, 16, 21]. In three dimen-
sions, however, one needs four Z2 indices: (ν0;ν1,ν2,ν3) to
fully characterize the system [13, 14]. Here, ν0 = 1 implies a
strong topological phase, and the surface states accommod-
ate odd number of Dirac cones. However, ν0 = 0 can indic-
ate a trivial or weak-topological phase hosting even number
of Dirac cones. In particular, strong topological phase (weak
topological phase) is characterized by ν0 = 1 (ν0 = 0), once
at least one of the ν1,2,3’s remains non-zero. Trivial phase is
designated by ν1,2,3 = 0, along with ν0 = 0. The latter exhib-
its no/gapped surface states. Overall, the so far discussed 2D
and 3D TIs are referred to as first-order TIs (FOTIs).

The FOTIs are protected by TRS, and one can adiabatically
connect the TIs to atomic insulators only if TRS is explicitly
broken or the bulk gap is closed. Thus, only the TRS plays
a pivotal role in BBC in the case of a FOTI. However, the
advent of topological crystalline insulator (TCI) establishes
the role of spatial symmetries (e.g. space-inversion, mirror,
etc) in the BBC [23–29]. Here, SOC is not that much neces-
sary to procure the topological phase. The BBC in a TCI is
more indeterminate and depends on the information about the
boundary termination. Moreover, the boundary may possess
lower symmetries compared to the bulk in a TCI, and the sur-
faces/edges that satisfy the crystalline symmetry requirements
host gapless states. Nevertheless, TCIs are robust against a
symmetry-preserving disorder that does not close the bulk gap.
From the experimental point of view, mirror-symmetry protec-
ted TCI has been detected in materials like Pb1−xSnxTe [30],
Pb1−xSnxSe [31], etc.

Very recently, the concept of BBC has been transcended
to a new class of topological materials called the higher-order
TI (HOTI) [32–55], where the spatial and non-spatial (time-
reversal, particle-hole, chiral) symmetries come together to
protect such phase. In particular, a d-dimensional HOTI
of order n, like the FOTI, possesses a gapped bulk states
(see figure 1), however unlike FOTI, they do not mani-
fest (d− 1)-dimensional gapless boundary states, rather a
(d− n)-dimensional boundary modes (see figures 1(c)–(e)).
Precisely, a 2D second-order TI (SOTI) exhibits localized 0-
dimensional (0D) corner states and gapped edge states (see
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Figure 1. Schematics of nth order TIs are illustrated. Panels (a) and
(b) represent a 2D and 3D TI, respectively. Both systems have
gapped-bulk states [gray region]. However, a 2D (3D) TI exhibit
1D (2D) edge states [represented by green lines] (surface states
[represented by green surfaces]). Schematics of 2D and 3D SOTI
are depicted in panels (c) and (d). Both systems have a gapped bulk
and (d− 1)-dimensional boundary states [gray regions]. However, a
2D (3D) SOTI exhibit 0D (1D) corner states [represented by green
spheres] (hinge states [represented by green lines]). (e) Schematic of
a 3D TOTI is demonstrated. The system hosts a gapped bulk as well
as (d− 1)- and (d− 2)-dimensional boundary states [gray regions].
However, a TOTI is accompanied by 0D localized corner states
[represented by green spheres].

figure 1(c)). At the same time, a 3D SOTI is characterized by
the presence of gapless, dispersive 1D hinge states and gapped
surface states (see figure 1(d)). In contrast, a 3D third-order
TI (TOTI) displays localized 0D corner states while the sur-
faces and the hinges remain gapped (see figure 1(e)). Thus,
the materials previously thought to be topologically trivial
due to the absence of (d− 1)-dimensional boundary states
may turn out to be HOTI, thereby enhancing the quest for
searching new topological materials. The higher-order polar-
ization, like quadrupole and octupole moments, can be formu-
lated for the topological characterization of HOTIs [32, 33].
In this intriguing direction, a few experimental propos-
als have also been put forward employing solid-state sys-
tems [56–60], phononic crystals [61], acoustic systems [51,

62–64], electric-circuit setups [65], photonic lattice [66–68]
etc. Thus, such higher-order systems constitute a distinctive
new family of topological phases of matter.

In recent times, light–matter interaction has become a
fascinating research direction from both theoretical and
experimental perspectives. The application of light in a
solid-state system can architect light-induced insulator-metal
transition [69], light-induced photovoltaic effect [70, 71],
photo-thermoelectric effect [72], light-induced superconduct-
ivity [73], etc. Moreover, the non-equilibrium generation of
topological states of matter has become another intriguing
research direction since the last decade [70, 74–89]. In a
time-periodic system, Floquet theory provides the prescrip-
tion for analyzing the non-equilibrium systemwith the concept
of quasi-energy and quasi-states [90], and thus the periodic-
ally driven systems are also called the Floquet systems. In
a static equilibrium system, there are only a few ways to
tune the topological properties of a system, e.g. by chan-
ging the width of the system [91, 92], doping concentration,
etc. However, Floquet engineering provides us with the on-
demand control of the topological properties of a system in
the presence of an external periodic drive [70, 74–86, 88,
89, 93–100]. Employing Floquet engineering, one can gener-
ate the topological phase starting from a topologically trivial
system. The resulting BBC here becomes intriguing in the
presence of the extra-temporal dimension. Another intriguing
aspect of Floquet engineering is that one can also engin-
eer the closing and reopening of bulk gaps at the Floquet-
zone boundary, i.e. at quasienergy ω/2 when ω lies within
the intermediate regime (i.e. ω ∼ bandwidth of the system);
with ω being the driving frequency. Thus within the inter-
mediate frequency regime, there is a possibility of realizing
anomalous boundary modes at finite quasienergy, namely π-
modes, with concurrent regular 0-modes [75, 78–80, 84, 85,
88, 101]. These π-modes do not exhibit any static analog
and, thus, true dynamical in nature. The prodigious experi-
mental development of Floquet systems based on solid-state
setup [102–104], ultra-cold atoms [105, 106], acoustic sys-
tems [107, 108], photonic platforms [109, 110], etc add fur-
ther merits to this field towards their realization and possible
device application. However, the light-induced quantum phe-
nomena are truly non-equilibrium in nature, and the physical
signatures of dynamical modes, as well as the stabilization of
these systems, are not very clear as of yet [88, 93], and most
of the understanding is derived from the transport measure-
ments [93].

The remainder of the review article is organized as follows.
In section 2, we present the basic models of static HOTI and
their basic phenomelology. In section 3, we present a primer
on the Floquet theory and discuss the Floquet FOTI based
on driven Bernevig–Hughes–Zhang (BHZ) model. Section 4
is devoted to the detailed discussion of Floquet generation
HOTIs in two and three dimensions via different periodic driv-
ing. We present a discussion and possible outlook in section 5.
The current experimental progress for the realization of the
HOTI phase is discussed in section 6. Finally, we summarize
and conclude our article in section 7.
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Figure 2. A schematic representation of the BBH model is
demonstrated. The unit cell comprises of four pseudo-spin/orbital
degrees of freedom, represented by 1–4. Here, blue and magenta
solid lines represent intra- and inter-cell hoppings, respectively. At
the same time, the dashed lines portray a negative hopping value.

2. Static HOTI models

In this section, we discuss the features of a few static HOTI
models before moving toward the non-equilibrium generation
of HOTI.

2.1. 2D SOTI

In two dimensions, the most popular models for describing
the SOTI phase are the Benalcazar–Bernevig–Hughes (BBH)
model [32, 33] and BHZ model with a four-fold rotation C4

and TRS T breaking Wilson–Dirac (WD) mass term [36, 45].
However, one can obtain a unitary transformation to unearth a
one-to-one connection between these two models [54]. Here,
we briefly discuss these two models’ Hamiltonians, their
symmetries, topological phase boundaries, and topological
characterization.

2.1.1. Model-1: the BBH model. The BBH model is based
on a four-band Bloch Hamiltonian, which reads as [32, 33]

HBBH (k) =[t1 + t2 coskx]τxσ0 − t2 sinkx τyσz
− [t1 + t2 cosky]τyσy− t2 sinky τyσx , (1)

where the Pauli matrices τ and σ act on two different pseudo-
spin/orbital degrees of freedom. Here, t1 and t2 represent the
intra- and inter-cell hopping amplitudes, respectively. The lat-
tice representation of the BBH model is schematically depic-
ted in figure 2. Below, we discuss the various symmetries that
the bulk HamiltonianHBBH(k) respects along with the corres-
ponding symmetry operations:

• TRSwith T = τ0σ0K: T H(k)T −1 =H(−k); withK being
the complex-conjugation operator,

• Charge-conjugation symmetry with C = τzσ0K:
CH(k)C−1 =−H(−k),

• Sublattice or chiral symmetry with S = τzσ0:
SH(k)S−1 =−H(k),

Figure 3. (a) We depict the bulk bands of the BBH Hamiltonian
HBBH(k) (equation (1)) as a function of the crystal momenta kx and
ky. In panel (b), we illustrate the slab geometry eigenvalue spectrum
of the BBH model Hamiltonian, considering 20 lattice sites in the
y-direction. Both the bulk and edge exhibit a finite gap, which is
necessary for a SOTI phase. In panel (c), the eigenvalue spectrum of
a finite size (20× 20 lattice sites) BBH model is demonstrated. The
zero-energy eigenvalues are shown in the inset. The LDOS
corresponding to the zero-energy eigenstates is depicted as a
function of lattice geometry x and y in panel (d). It is evident that the
zero-energy states are localized at the corners of the system. In
panel (e), we illustrate the eigenvalue spectra of the finite-size
Hamiltonian as a function of the intra-cell hopping amplitude t1.
The zero-energy corner states are obtained for |t1/t2|< 1, and the
red line represents the corresponding eigenvalues. In panel (f), we
depict the quadrupole moment Qxy as a function of t1. We choose
the model parameters as t2 = 1.0 (for all the panels) and t1 = 0.5
(for the panels (a)–(d)).

• Mirror symmetry along x with Mx = τxσz:
MxH(kx,ky)M−1

x =H(−kx,ky),
• Mirror symmetry along y with My = τxσx:
MyH(kx,ky)M−1

y =H(kx,−ky),

Here, we have removed the subscript of the Hamiltonian
HBBH(k) for brevity.

Afterward, we demonstrate a few numerical results related
to the BBH model Hamiltonian that capture the HOTI phase.
As the system represents an insulating phase, the bulk of
the system exhibits a gapped band insulator. In figure 3(a),
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we depict the bulk bands for the Hamiltonian HBBH(k) as a
function of the crystal momenta kx and ky. One can observe
a finite bulk gap separating the valence and the conduction
bands. The edges should also be gapped in a system hosting
a second-order phase. In figure 3(b), we demonstrate the rib-
bon geometry (i.e. the system is finite in one direction, say
along y-direction and is periodic in the other direction) eigen-
value spectra E of the BBH model Hamiltonian as a function
of kx. The edges also become massive in this case. However,
the edges can be topological and support topological modes
inside the edge gap. To obtain the features of the corner modes
from the eigenvalue spectrum, we consider open boundary
conditions (OBCs) in both the x- and y-directions. We illus-
trate the eigenvalue spectrum En (obtained via OBC) of the
BBH model Hamiltonian as a function of the state index n
in figure 3(c). One can clearly identify the presence of four
zero-energy eigenvalues (E= 0) from the inset of figure 3(c).
To demonstrate the localized nature of the corner modes, we
compute the local density of states (LDOS). In figure 3(d), we
depict the LDOS as a function of the system dimensions x and
y, computed at E= 0. One can notice from the LDOS behavior
that the zero-energy corner modes are sharply localized at the
four corners of the system. To figure out the topological region
for the Hamiltonian in the parameter space, we exhibit the
eigenvalue spectra En of the BBH model Hamiltonian obey-
ing OBC as a function of the intra-cell hopping amplitude t1
in figure 3(e). It appears that the HamiltonianHBBH(k) repres-
ents a 2D SOTI hosting localized zero-energy corner modes
when the inter-cell hopping amplitude t2 dominates over that
of the intra-cell hopping i.e. |t2/t1|> 1. The red line repres-
ents the eigenvalues corresponding to the 0D corner states in
figure 3(e) when |t2/t1|> 1.

The topological characterization for the SOTI phase can be
achieved by computing the quadrupole moment Qxy with van-
ishing dipole moment for the bulk [32, 33]. For a crystal obey-
ing periodic boundary condition (PBC), one may define the
macroscopic quadrupole moment Qxy as [111, 112]:

Qxy =
1
2π

Im
[
ln⟨Ψ0|e2π i

∑
r q̂xy(r)|Ψ0⟩

]
, (2)

where, q̂xy(r) =
xy
L2 n̂(r) represent the microscopic quadru-

pole moment at site r, L being the number of lattice sites
considered along one direction, and |Ψ0⟩ is the many-body
ground state which one can construct employing the occu-
pied states [113]. To compute the Qxy numerically, we first
construct a N×Nocc dimensional matrix U employing the
sorted column-wise occupied eigenvectors of the real space
BBH model Hamiltonian; with N being the dimension of
the Hamiltonian and Nocc represents the number of occupied
eigenstates. Afterward, we formulate another matrix operator
WQ as

WQ
iα,j = exp

[
i
2π
L2
f(xiα,yiα)

]
Uiα,j . (3)

Figure 4. Schematic representation of the mass changing
mechanism in a 2D SOTI across the intersecting edges to realize a
zero-energy topological mode (represented by the green curve) at
the corners of the system. The edge-I and -II mass gaps are assumed

to be mI and mII, respectively, such that sgn
(
mI
mII

)
=−1.

Here, α represents all the orbital indices. Here,
f(xiα,yiα) = xiαyiα. Therefore, one can recast Qxy

(equation (2)) employing the U and WQ
iα,j as

Qxy =
1
2π

Im
[
Trln

(
U†WQ

)]
. (4)

The quadrupole moment Qxy is, however, only defined up
to modulo one, such that Qxy = Qxy mod 1. We compute
Qxy for the BBH model employing equation (4) and demon-
strate it as a function of the intra-site hopping amplitude t1
in figure 3(f). The Qxy exhibit quantized value of 0.5 in the
topological regime i.e. when |t1/t2|< 1. The mirror symmet-
ries Mx and My play the pivotal role in the quantization
of Qxy [32, 33]. Another important observation regarding the
Hamiltonian HBBH(k) is that, in HBBH(k), the terms asso-
ciated with kx and ky are decoupled. Thus, one can recast
HBBH(k) as two copies of the 1DSu–Schrieffer–Heeger (SSH)
chain along two directions with specificmatrix structure [114].
The system is topological when both the 1D SSH chains rep-
resent a topological phase.

The appearance of the 0D corner modes can be under-
stood analytically by constructing the Hamiltonians for the
edges while starting from the bulk Hamiltonian [32, 115].
In a 2D SOTI, the 1D edges can be represented using Dirac
Hamiltonians with mass terms. We schematically demonstrate
this scenario in figure 4. Two intersecting edge-Hamiltonians
corresponding to the edge-I and -II carry mass terms mI and
mII, respectively. In the topological phase, these two masses

carry opposite signs such that sgn
(
mI
mII

)
=−1. Afterward,

the knowledge of Jackiw–Rebbi theorem [116] enables us
to identify the change of sign of the mass terms of the
edge Hamiltonians intersecting at a corner, and thus one
can find the solution for the zero-energy localized corner
state [32, 115].

5
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2.1.2. Model-2: the BHZ model with C4 and T breaking
Wilson–Dirac mass term. The 2D SOTI phase can also be
realized considering the BHZ model [91] with a WD mass
term [36, 45]. In contrast to the BBH model where one can
only realize the SOTI phase, this model allows us to study the
hierarchy of topological orders. The Hamiltonian describing
this system can be written as

HBHZ+WD (k) = λsinkx σxsz+λsinky σys0
+(m0 − tcoskx− tcosky)σzs0
+Λ(coskx− cosky)σxsx , (5)

where, t represents the nearest neighbor hopping amplitude, λ
denotes the SOC strength,m0 symbolize the crystal field split-
ting, and Λ indicates the amplitude of the WD mass term. The
Pauli matrices σ and τ act on the orbital and the spin degrees
of freedom, respectively. Below, we discuss various symmetry
properties of the Hamiltonian HBHZ+WD(k):

• TRS with T = iσ0syK: T H(k)T −1 =H(−k), if Λ = 0,
• Charge conjugation symmetry with C = σxszK:
CH(k)C−1 =−H(−k),

• Sublattice or chiral symmetry with S = σxsyK:
SH(k)S−1 =−H(k),

• Four-fold rotation symmetry with C4 = e−i
π
4 σzsz :

C4H(kx,ky)C
−1
4 =H(−ky,kx), if Λ = 0,

• The combined C4T symmetry: (C4T )H(kx,ky)(C4T )−1 =
H(ky,−kx).

The difference between Model-1 and Model-2 is that the
former can only hosts second-order phase while the latter can
host first- as well as second-order phase both. Specifically,
when Λ is zero, the Hamiltonian (equation (5)) represents
a QSHI hosting gapless 1D edge-modes if −2t< m0 < 2t.
However, adding the WD mass term introduces a gap in the
edges. The edge-Hamilonians corresponding to the two inter-
secting 1D edges inherit opposite masses, proportional to Λ.
The Jackiw–Rebbi theorem then guarantees to perceive the
emergence of the 0D corner modes.

Having a phenomenological understanding of this model,
we tie up with a few numerical results related to this system.
The bulk bands of HBHZ+WD(k) exhibit a finite gap around
the Fermi energy resembling that of the BBH model (see
figure 3(a)). In figures 5(a) and (b), we depict the ribbon geo-
metry spectrum with a finite number of lattice sites along y
and x, respectively. It is evident that a finite gap exists in both
the edge states. Nevertheless, the eigenvalue spectrum of the
finite-size system Hamiltonian should manifest zero-energy
eigenvalues if the corner states are present. In figure 5(c), we
depict the eigenvalue spectrum En as a function of the state
index n for the Hamiltonian obeying OBC along both x and
y directions. The zero-energy states are denoted by the red
points in the inset of figure 5(c). To ascertain the corner local-
ization of the zero-modes, we compute the LDOS and repres-
ent the same as a function of the system dimensions x and y in
figure 5(d). It is apparent that the zero-energy states are sharply
localized at the corners of the system. Thus, one can confirm

Figure 5. In panels (a) and (b), we depict the gapped spectrum
considering the ribbon geometry for the Hamiltonian (equation (5)),
as a function of the momenta kx and ky, respectively. In panel (c), we
depict the eigenvalue spectrum as a function of the state index n for
the finite size system (20× 20 lattice sites). The LDOS associated
with the zero-energy corner states is demonstrated in panel (d). In
panel (e), we show the eigenvalue spectra of the finite-size system as
a function of m0. In panel (f), we depict the quadrupole moment Qxy

as a function of m0. We choose the model parameters as follows:
λ= t= m0 = Λ= 1 (for the panels (a)–(d)).

that the HamiltonianHBHZ+WD(k) possesses the characteristic
of a 2D SOTI. In figure 5(e), we illustrate the eigenvalue spec-
tra of the Hamiltonian as a function of the crystal field splitting
mass termm0, obeying OBC in both the directions x and y. The
SOTI phase is obtained when −2t< m0 < 2t. Furthermore,
we compute the quadrupole moment Qxy for this model (see
equation (4)) and demonstrate the same as a function of m0 in
figure 5(f). We obtainQxy = 0.5 mod 1, for−2t< m0 < 2t and
0, otherwise. This confirms the second-order band topology of
this model.

2.2. 3D SOTI

In three dimensions, the SOTIs are characterized by a
gapped bulk and surface state while exhibiting gapless hinge
states (see figure 1(c)). Unlike a 2D SOTI, a 3D SOTI exhib-
its gapless dispersive modes which appear at the hinges of
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Figure 6. Schematic diagram of a 3D SOTI hosting chiral and
helical hinge modes are presented in panels (a) and (b), respectively.
The arrows on the blue and green lines indicate the propagation
direction of the electrons along the hinges.

the system. These hinge modes can either be chiral or hel-
ical (see figure 6). The chiral SOTI breaks TRS, and thus the
chiral hinge modes are unidirectional (see figure 6(a)) akin
to the quantum Hall or QAH insulator edge states. In con-
trast, the helical SOTI respects TRS, and thus the helical hinge
modes are accompanied by a counter-propagating partner (see
figure 6(b)) as guaranteed by the Kramers’ degeneracy resem-
bling the QSHI [36].

Here, we explore the model of a 3D SOTI proposed by
Schindler et al [36]. The corresponding model Hamiltonian
reads as

H3D
SOTI (k) = λsinkx σxsx+λsinky σxsy+λsinkz σxsz

+

m0 + t
∑
i=x,y,z

coski

σzs0

+Λ(coskx− cosky)σys0 , (6)

where, the Pauli matrices σ and s operate on the orbital
and spin spaces, respectively. Here, t, λ, m0, and Λ rep-
resent the amplitude of the hopping, SOC, crystal field
splitting, and the C4 and TRS braking WD mass term,
respectively. Similar to the 2D SOTI Hamiltonian, this
Hamiltonian [H3D

SOTI(k)] breaks both TRS T and four-fold
rotation symmetry C4 when Λ ̸= 0; with T = iσ0syK and
C4 = σ0e−

π
4 sz . Nevertheless, H3D

SOTI(k) respects the com-
bined C4T symmetry: (C4T )HSOTI(kx,ky,kz)(C4T )−1 =
HSOTI(ky,−kx,−kz). Moreover, when Λ = 0 the Hamiltonian
(equation (6)) exhibits a strong 3D TI phase with 2D
gapless surface states if t< |m0|< 3 [3, 16, 17]. When
Λ ̸= 0, the surface states are gapped out by a mass
term proportional to Λ. However, the yz- and zx-surface
accumulate mass terms that are opposite in sign. Thus
employing the Jackiw–Rebbi theorem, one can obtain a
hinge mode along the junction of the above-mentioned
surfaces [34, 116].

To identify the hinge states, we employ rod geometry
i.e. the system obeys PBC along one direction, say z-direction,
and satisfies OBC along the remaining two directions i.e. x-
and y-directions. In the rod geometry, we diagonalize the
Hamiltonian and demonstrate the eigenvalues as a function
of the momentum kz in figure 7(a). Here, red lines represent
the gapless dispersive nature of the hinge modes. Moreover,

Figure 7. The eigenvalue spectrum corresponding to the rod
geometry Hamiltonian of a 3D SOTI is depicted in panel (a) as a
function of kz. In panel (b), we demonstrate the eigenvalue spectrum
En of the finite size (15× 15× 15 cubic lattice) Hamiltonian as a
function of the state index n. The LDOS distribution associated with
the states near En = 0 is shown in panel (c) as a function of the
system dimensions. We choose the model parameters as follows:
λ= t= m0 = Λ= 1.

in a finite size system i.e. OBC along all three directions, the
eigenvalue spectrum En of the Hamiltonian manifest a gapless
nature around the energy En = 0 when illustrated as a function
of the state index n (see figure 7(b)). The LDOS distribution
corresponding to the zero-energy states is shown in figure 7(c)
as a function of the system dimensions x, y, and z. It is evident
that the hinges modes are sharply localized along the hinges
while decaying exponentially into the surfaces as well as in the
bulk. The corresponding decaying/localization length of the
hinge modes depends on the system parameters i.e. λ, t,m0,Λ
etc.

2.3. 3D TOTI

In three dimensions, one can also realize a third-order topo-
logical phase apart from the first and second-order phases.
The 3D TOTIs exhibit gapped bulk, surface, and hinge states
(see figure 1(e)). Nevertheless, a TOTI manifests localized 0D
corner modes akin to the 2D SOTI. A mass term gaps out
the hinge modes of a TOTI such that two adjacent hinges
meeting at a corner accommodate mass terms of opposite
signs. Afterward, the Jackiw–Rebbi theorem can be utilized
to understand the appearance of the corner modes. The 3D
TOTI can be thought of as an octupolor system [32, 33]. To
host an octupolar phase (3D TOTI) one needs at least four
unoccupied bands [32, 33]. A 3D version of the BBH model
can be employed to realize only the 3D TOTI if one can
couple three 1D SSH chains along three orthogonal directions

7
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Figure 8. (a) Eigenvalue spectrum En is depicted as a function of
the state index n for the finite size Hamiltonian [15× 15× 15 cubic
lattice] of 3D TOTI, obeying OBC along all directions. In the inset,
the eigenvalues close to En = 0 are highlighted for better clarity. (b)
The LDOS distribution associated with the En = 0 states is
illustrated as a function of the system dimension x, y, and z. This
confirms the sharp corner localization of the zero-energy modes. We
choose the model parameters as follows:
λ= t= m0 = Λ1 = Λ2 = 1.

with appropriate matrix structure. However, the BBH model
does not allow us to systematically study the appearance of
different orders of topological phases as discussed earlier. On
the other hand, one can start with the Hamiltonian of a 3D
SOTI (equation (6)) and introduce another degree of freedom
(sublattice). Afterward, the hinge modes can be gapped out
by incorporating another appropriate WD mass term [117].
Below we present the model Hamiltonian that represents a 3D
TOTI.

H3D
TOTI (k) = λsinkx µxσxsx+λsinky µxσxsy+λsinkz µxσxsz

+

m0 + t
∑
i=x,y,z

coski

µxσzs0

+Λ1 (coskx− cosky)µxσys0
+Λ2 (2coskz− coskx− cosky)µzσ0s0 , (7)

where, the Pauli matrices µ, σ, and s act on the sublat-
tice, orbital, and spin degrees of freedom, respectively. Here,
t, λ, m0, and Λ1,2 represent the amplitude of the hopping,
SOC, crystal field splitting, and WD mass terms, respect-
ively. We demonstrate the eigenvalue spectrum En corres-
ponding to the Hamiltonian (equation (7)) as a function of
the state index n in figure 8(a). Here, the system obeys OBC
in all three directions (x, y, and z). The eight zero-energy
eigenvalues are marked by the red points for clarity in the
inset of figure 8(a). The LDOS at En = 0 is illustrated in
figure 8(b). The zero-energy states are clearly localized at
the eight corners of the system. When Λ1 ̸= 0 and Λ2 = 0,
the system exhibits a 3D SOTI hosting 1D propagating
hinge modes. Thus, this model enables one to investigate
the hierarchy of different higher-order topological phases
systematically.

The 3D TOTI phase can be topologically characterized
employing the octupole moment Oxyz. The macroscopic octu-
pole moment Oxyz for a crystal obeying PBC can be defined
through the microscopic octupolar moment operator ôxyz(r) =
xyz
L3 n̂(r) as [111, 112] :

Oxyz =
1
2π

Im
[
ln⟨Ψ0|e2π i

∑
r ôxyz(r)|Ψ0⟩

]
. (8)

Here, |Ψ0⟩ is the many-body ground state. As before, we
first construct a N×Nocc dimensional matrix U employing
the Nocc eigenvectors corresponding to the real space model
Hamiltonian of TOTI. Afterward, we formulate another mat-
rix operator WO as

WO
iα,j = exp

[
i
2π
L2
f(xiα,yiα,ziα)

]
Uiα,j (9)

where, α represents the sublattice, orbital, and spin indices.
Here, f(xiα,yiα,ziα) = xiαyiαziα. Therefore, Oxy, defined in
equation (8), can be recast in the form

Oxyz =
1
2π

Im
[
Trln

(
U†W

)]
. (10)

In the topological regime a TOTI exhibits a quantized Oxyz =
0.5 (mod 1) [32, 33], when both Λ1,2 ̸= 0.

3. Floquet theory and Floquet FOTI: a primer

Here, we briefly discuss the main outline of Floquet theory and
its application for the driven BHZ model. The latter turns out
to be a Floquet FOTI (FFOTI). The key parameters in a driven
system are the band-width in terms of hopping amplitude
(∼eV), SOC (∼meV) and the driving frequency (∼THz).

3.1. Floquet theory

In a periodically driven system, the Hamiltonian governing the
system can be written in the form

H(t) = H(t+T) = H0 +V(t) , (11)

where, T= (2π/ω) is the time-period of the drive. Here, H0

and V(t) represent the static and the time-dependent part of
the full HamiltonianH(t) with V(t) satisfying V(t) = V(t+T).
The static Hamiltonian H0 is assumed to have the eigen-
values {En} and eigenfunctions {|ϕn⟩}. The time-dependent
Schrödinger equation for H(t) reads as[

H(t)− i h̄
∂

∂t

]
|Ψ (t)⟩= 0 . (12)

Now, employing the Floquet theorem [90, 118], one obtains
the solution of equation (12) as

|Ψα (t)⟩= e−iϵαt/h̄ |Φα (t)⟩ , (13)

8
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where, |Ψα(t)⟩’s are called the Floquet states [119, 120],
while |Φα(t)⟩’s are the time-periodic Floquet modes such that:
|Φα(t+T)⟩= |Φα(t)⟩. The ϵα is the quasienergy analogous
to the Bloch momentum in a periodic solid. The Floquet states
are also the eigenstates of the time-evolution operator over one
driving period T (also known as the Floquet operator), such
that

U(t0 +T, t0) |Ψα (t0)⟩= e−iϵαt/h̄|Ψα (t0)⟩ , (14)

where t0 indicates the initial time. However, the quasienergy
ϵα is independent of the choice of t0 [82]. Time-dependent
Floquet states at any time instance t can be obtained by oper-
ating the time-evolution operator as

|Ψα (t)⟩= U(t, t0) |Ψα (t0)⟩ . (15)

On the other hand, the Floquet operator U(t0 +T, t0) can also
be computed in terms of a time-ordered (TO) notation as
follows

U(t0 +T, t0) = TO exp

[
−i
ˆ t0+T

t0

dtH(t)

]
=

N−1∏
j=0

U(tj+ δt, tj) , (16)

where, U(tj+ δt, tj) = e−iH(tj)δt; with δt= T
N and tj = t0 +

jδt. However, U(tj+ δt, tj) can be computed more efficiently
employing the second-order Trotter–Suzuki formalism [121–
124] as follows

U(tj+ δt, tj) = e−i δt2 V(tj+
δt
2 )e−iδtH0e−i δt2 V(tj+

δt
2 ). (17)

Note that, one needs to evaluate e−iδtH0 only once as it is
independent of time. However, the time increment δt needs
to be chosen in such a way that U(T,0) is unitary. Following
equation (16), one can also construct a time-evolution operator
at any time t, U(t+ t0, t0) by replacing T→ t.

On the other hand, employing the Floquet operator
U(t0 +T, t0), one can also define a time-independent Floquet
Hamiltonian HF, such that

U(t0 +T, t0) = exp

(
− iHFT

h̄

)
. (18)

The Floquet Hamiltonian HF shares the same Floquet states
|Ψα(t0)⟩ as the Floquet operator and one can represent HF in
terms of the Floquet modes |Φα(t0)⟩ as

HF =
∑
α

ϵα|Ψα (t0)⟩⟨Ψα (t0)| . (19)

The Floquet Hamiltonian HF along with the Floquet operator
U(t0 +T, t0) serves the purpose of the dynamical analog of the
static Hamiltonian.

At first glance, one can identify that the phase-factor
e−iϵαt/h̄ in equation (14) is not uniquely defined. One may

replace ϵα by ϵαm = ϵα +mω with m ∈ Z and the exponen-
tial still remain invariant. Thus, there is an ambiguity in defin-
ing the Floquet modes |Φα(t)⟩= eiϵαt/h̄ |Ψα(t)⟩ as well the
Floquet Hamiltonian HF in equation (19). However, one can
employ the idea of the Brillouin zone used in a periodic lat-
tice to restrict the quasi-momenta in the first Brilloun-zone.
Here, one may as well invoke an analogous first Floquet zone
such that ϵα is defined using a modulo operation such that
ϵα = ϵαm mod h̄ω. In the extended space of quasienergies, the
Floquet modes take the form

|Φαm (t)⟩= eiϵαmt/h̄ |Φα (t)⟩ , (20)

so that

|Ψα (t)⟩= e−iϵαt/h̄|Φα (t)⟩= e−iϵαmt/h̄ |Φαm (t)⟩ . (21)

Now, the Floquet modes |Φα(t)⟩ can be expressed in terms of
Fourier components as

|Φα (t)⟩=
∑
m∈Z

e−imωt|φ(m)
α ⟩ , (22)

where, |φ(m)
α ⟩’s are the Fourier component of |Φα(t)⟩. In

terms of these Fourier components, the Floquet states |Ψα(t)⟩
(equation (13)) reads

|Ψα (t)⟩=
∑
m

e−i(ϵα+mω)t/h̄|φ(m)
α ⟩ . (23)

After substituting equation (23) in equation (12), we obtain

∑
m ′∈Z

[Hm−m ′ −mωδm,m ′ ] |φ(m
′)

α ⟩= ϵα|φ(m)
α ⟩ , (24)

where we have introduced the Fourier component of H(t) as

Hm =

ˆ t0+T

t0

dt
T
H(t) eimωt . (25)

Here, the original Hilbert space H of H(t) is expanded
to H⊗T [83, 119, 120]. The Hilbert space T=⊕mTm

is spanned by the time-periodic functions such that Tm ={
e−imωt

}
andm ∈ Z. Afterward, we can construct the infinite-

dimensional time-independent Floquet Hamiltonian, incor-
porating the frequency-zone scheme as [82, 119, 120]

9
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H∞
F =



···
... ··

·

H−2 H−1 H0 − 2h̄ω H1 H2

H−2 H−1 H0 − h̄ω H1 H2

H−2 H−1 H0 H1 H2

H−2 H−1 H0 + h̄ω H1 H2

H−2 H−1 H0 + 2h̄ω H1 H2

···
... ···


. (26)

Here, the structure of H∞
F is analogous to a quantum system

coupled to a photon-like bath with m being the photon num-
ber [82]. The Hm’s (|m|⩾ 1) describes a m-photon process
and acts as the coupling between different photon sectors.
Although, it is a formidable task to deal with this infin-
ite dimensional Hamiltonian H∞

F . Nevertheless, in the high-
frequency limit i.e. ω ≫ band-width of H0, one may employ
perturbation theories like Brillouin–Wigner (BW) perturb-
ation theory [83], van Vleck perturbation theory [82, 83],
Floquet–Magnus perturbation theory [82, 83, 125, 126], etc.
However, in the moderate frequency regime i.e. ω ∼ band-
width, such perturbation theory breaks down. Nevertheless,
one may consider a few photon sectors by defining a suitable
cutoff [79, 80]. However, in the low-frequency regime, there
is some development in the direction of deriving an effective
Hamiltonian [127, 128]. On the other hand, one may resort
to high-amplitude perturbation theory or Floquet perturbation
theory when the amplitude of the driving field is much lar-
ger than the energy scales of the static Hamiltonian [129–
132]. Another approach to obtain an effective Hamiltonian
description of the driven system is via constructing a (d+ 1)-
dimensional time-independent Hamiltonian starting from a d-
dimensional time-periodic system [133].

3.2. Floquet FOTI: driven BHZ model

The topological transition in the BHZ model considering the
HgTe/CdTe quantum well can be tuned by the critical thick-
ness of the quantum well [91, 92]. This restricts the pos-
sible ways to tune the topological phases of the matter due to
the unavailability of suitable knobs to control the band topo-
logy [88]. However, one can add a time-periodic perturba-
tion to generate a topological phase in such a system out of
a trivial (non-topological) phase. In this direction, we dis-
cuss the Floquet generation of topological modes in the BHZ
model (i.e. realization of FFOTI) while starting from a non-
topological phase [76]. The model Hamiltonian for the BHZ
model reads [91]

HBHZ (k) =Asinkx σxsz+Asinky σys0
+(M− 4B+ 2Bcoskx+ 2Bcosky)σzs0 ,

(27)

where, A, B, and M represent the amplitude of the SOC,
hopping, and crystal field splitting, respectively. The Pauli
matrices σ and s act on the orbital and spin degrees of free-
dom, respectively. The static system becomes topological if
0<M< 8B. Afterward, we introduce the driving protocol as
harmonic time-dependence in the onsite term as

V(t) = Vcosωt σzs0 . (28)

Here, V and ω are the amplitude and frequency of the drive,
respectively. Then the time-dependent system can either be
studied employing the time-domain picture: by formulating
the time evolution operator U(t,0) (equation (16)) or in the
frequency-domain: by constructing the Floquet Hamiltonian
H∞

F (equation (26)). However, here we prefer the former scen-
ario and compute the Floquet operator U(T,0) to extract the
features of the driven system.

Case I: First, we consider the static undriven system to
reside in the non-topological regime such that M< 0. We
consider ribbon geometry (i.e. the system is finite along y-
direction and infinite along x-direction) and diagonalize the
Floquet operator. We depict the eigenvalue spectra E in
figure 9(a). This has been computed from the Floquet oper-
atorU(T,0). One can identify a gapless dispersive mode at the
quasi-energy ±ω/2 or π-gap. These π-modes are genuinely
dynamical and possess no static analog. Also, such Floquet
edge modes are chiral in nature.

Case II: On the other hand, if we start from the topological
regime (0<M< 8B), one can generate both 0- and π-mode
as depicted in figure 9(b). There can be other cases as well
where multiple number of 0- and π-modes can appear simul-
taneously as well as separately. Generation of similar 0- and
π-Floquet modes can be shown to exist in gapless systems e.g.
graphene [79, 80, 82, 83].

4. Floquet generation of HOTIs

In this section, we discuss different driving protocols to gen-
erate the Floquet HOTI (FHOTI) phase hosting higher-order
boundary modes while starting from a trivial or a first-order
topological phase.
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Figure 9. (a) We depict the quasi-energy spectra as a function of kx
for a harmonically driven BHZ model, starting from the static
non-topological regime with M=−1.0. The driving frequency for
this case is chosen as Ω= 3.0. In panel (b), we repeat the same
while starting from the topological regime with M= 1.0. We choose
ω= 1.5 for this case. The rest of the model parameters take the
values: A= B= 0.2 and V = 1.0.

Figure 10. (a) A schematic portrayal of C4 and T symmetry
breaking periodic kick V(t) (see equation (30)). This type of drive
protocol gives rise to 0D corner-localized modes at time t=T (see
figure 11(b)). Reproduced from [134]. CC BY 4.0.

4.1. Perturbation kick in two dimensions

The Floquet SOTI (FSOTI) hosting 0D corner modes can be
generated employing a periodic kick inC4 and T breakingWD
mass termwhile starting from a static QSHI [134]. To this end,
we begin with the Hamiltonian of 2D QSHI as

HQSHI = t1

2∑
j=1

Γj sinkj− t0

m−
2∑

j=1

coskj

Γ3 ≡ N(k) ·Γ,

(29)

where kj represents momentum along the jth direction, t0, t1,
and m indicate the hopping amplitude, SOC strength, and the
crystal field splitting, respectively. The 4× 4 anti-commuting
Γ matrices are given as: Γ1 = σxsz, Γ2 = σys0, and Γ3 = σzs0.
The Pauli matrices σ and s operate on the orbital and spin
degrees of freedom, respectively. The system represents a
QSHI hosting propagating 1D edge modes when 0< |m|<
2 [91]. We introduce the time-dependent perturbation in terms
of a periodic kick in C4 and T braking WD mass term as (see
figure 10(a) for a schematic)

V(t) = VxyΓ4

∞∑
r=1

δ (t− r T) , (30)

where Vxy =∆(coskx− cosky), r is an integer, and Γ4 =
σxsx. We recover a static SOTI hosting 0D corner modes,
if we consider the Hamiltonian HStat = HQSHI +Γ4Vxy. As
{HQSHI,Γ4}= 0. The term VxyΓ4 breaks the C4 = e−i π4 σzsz as
well as TRS T = iσ0syK (with K being the complex con-
jugation operation). However, it respects the combined C4T
symmetry. One can show that this WD mass term induces
a finite mass term proportional to ∆ in the edge states of
QSHI and then one can employ the Jackiw–Rebbi theorem
to understand the appearance of the corner-localized zero-
modes [116, 135, 136].

To realize the FSOTI in the presence of the periodic kick
(see figure 10(a) and equation (30)), we construct the Floquet
operator in terms of the time-ordered (TO) product as

U(T) = TOexp

[
−i
ˆ T

0
[HQSHI +V(t)]dt

]
= exp(−iHQSHI T) exp(−iVxyΓ4) . (31)

One can obtain the effective Floquet Hamiltonian (HFlq):
U(T) = exp(−iHFlqT)≈ 1− iHFlqT+O(T2). In the high-
frequency limit (T→ 0), we only keep the terms upto first-
order in T and obtain the effective Floquet Hamiltonian as

HFlq =
3∑

j=1

Nj (k)Γj+Vxy

3∑
j=1

Nj (k)Γj4 +
Vxy
T

Γ4 , (32)

where Γjk = [Γj,Γk]/(2i). Here, we further assume that
T,∆→ 0, but ∆/T is finite. To numerically demonstrate that
the driven system represents an FSOTI, we diagonalize the
Floquet operator (equation (31)) employing OBC in both the
x- and y-directions and obtain an eigenvalue equation of the
form: U(T) |ϕn⟩= exp(−iµnT) |ϕn⟩; where |ϕn⟩ and µn are
the Floquet state and the quasi-energy, respectively. We illus-
trate the quasi-energy spectra in figure 11(a) as a function
of the state index n. The presence of the zero quasi-energy
states is evident from the inset of figure 11(a). While we depict
the LDOS corresponding to these zero quasi-energy states in
figure 11(b) and it is evident that these states are localized at
the corners of the system. However, no π-modes appear for
such drive.

One can show that the 2D static SOTI exhibits quant-
ized quadrupolar moment Qxy = 0.5 (mod 1) [32, 111, 112]
(see equation (2) for the definition). To compute the Floquet
quadrupolar moment QFlq

xy , we first construct the matrix U by
columnwise arranging the eigenvectors |ϕn⟩ according to their
quasi-energy µn, such that −ω

2 < µn < 0 while noticing that
the Floquet operator has the quasi-energy window

(
−ω

2 ,
ω
2

)
.

Afterward we follow the similar procedure as mentioned in
section 2.1.1 (see equations (2)–(4)) to compute QFlq

xy . The
quadrupolar moment QFlq

xy is depicted for this driven system as
a function ofm in figure 11(c). One can observe that the FSOTI
phase is obtained for |m|< 2, exhibiting QFlq

xy = 0.5 while
QFlq
xy = 0 represents a trivial system. One can further verify that

the quantization of the Floquet quadrupolar moment does not
depend upon the system size as illustrated in figure 11(d).
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Figure 11. Engineering of a 2D FSOTI, hosting four
zero-quasienergy corner modes (µn = 0). In panel (a), we depict the
quasi-energy µn as a function of state index n. In the inset, we
demonstrate the zoomed-in quasi-energy around µn = 0. We
illustrate the LDOS distribution corresponding to the µn = 0 states
of the Floquet operator U(T) (see equation (31)) in panel (b). The
model parameters are chosen as t0 = t1 = m= 1, ∆= 0.3, and
T = 0.628. The corresponding frequency ω = 2π/T≈ 10≫ t0,1.
(c) Floquet quadrupolar moment (QFlq

xy ) is depicted as a function of
m. The system consists of 20× 20 lattice sites with the choice of
origin at (x0,y0) = (0,0). The system exhibits a FSOTI (trivial
phase) for |m|< 2 (|m|> 2) with QFlq

xy = 0.5 (0.0). (d) The system
size (L) independence of QFlq

xy is shown inside FSOTI (m= 1.0) and
trivial (m= 3.0) phase. Reproduced from [134]. CC BY 4.0.

4.2. Step drive in two dimensions

One can also employ a periodic two-step drive protocol to gen-
erate the FSOTI in two dimensions [137]. This protocol allows
us to realize the dynamical π-modes along with the concurrent
0-modes. The driving protocol reads

HdD = J ′1h1,2D(k) , t ∈

[
0,
T
2

]
,

= J ′2h2,2D(k) , t ∈

(
T
2
,T

]
, (33)

where J ′1 and J ′2 carry the dimensions of energy. We set
h̄= c= 1 and define two dimensionless parameters such as
(J1,J2) = (J ′1T,J

′
2T); where T represents the period of the

drive and the corresponding driving frequency is given as
Ω= 2π/T. At the ith step, the Hamiltonian of the sys-
tem is represented by J ′i hi,2D(k). We consider h1,2D(k) =
σz and h2,2D(k) = (coskx+ cosky)σz+ sinkxσxsz+ sinkyσy+
α(coskx− cosky)σxsx to generate FSOTI hosting localized
corner modes. The two Pauli matrices σ and s operate on
orbital (a, b) and spin (↑,↓) degrees of freedom, respectively.
The first Hamiltonian J ′1h1,2D(k) comprises of the on-site term
only and respects all the necessary symmetries. On the other
hand, the Hamiltonian in the second step J ′2h2,2D(k), incor-
porates all the hopping terms. When the term proportional to
α is present (absent) in J ′2h2,2D(k), it breaks (respects) the

TRS (T = i syK), the four-fold rotation (C4) symmetry, and
the mirror symmetries. The combined C4T symmetry is still
preserved nonetheless.

Before moving to the dynamic case, we first discuss the
static counterpart of this model. One may consider the follow-
ing static Hamiltonian

HStatic
2D (k) =J ′1h1,2D (k)+ J ′2h2,2D (k) , (34)

where HStatic
2D (k) represents the Hamiltonian of a 2D QSHI

hosting 1D helical gapless edge states, when α= 0 and 0<
|J ′1|< 2|J ′2| [91, 92]. However, for α ̸= 0, the edge states of
the QSHI attain a mass term proportional to α and become
massive in such a way that two intersecting edges carry oppos-
ite mass terms. One can use a similar line of arguments as
discussed in section 4.1 to understand that the Hamiltonian
HStatic

2D (k) (equation (34)) represents a 2D SOTI hosting loc-
alized 0D corner modes.

Following the step drive protocol, we obtain the Floquet
operator U2D(k,T) as

U2D (k,T) = exp

(
−i J2

2
h2,2D (k)

)
exp

(
−i J1

2
h1,2D (k)

)
,

(35)

where one can express U2D(k,T) as U2D(k,T) = f2D(k)I+
ig2D(k), such that

f2D (k) = cos

(
γ2D (k)

J1
2

)
cos

(
λ2D (k)

J2
2

)
− sin

(
γ2D (k)

J1
2

)
sin

(
λ2D (k)

J2
2

)
χ2D (k) ,

(36)

g2D (k) =− 1
γ2D (k)λ2D (k)

sin

(
γ2D (k)

J1
2

)
× sin

(
λ2D (k)

J2
2

)
η2D (k)− sin

(
γ2D (k)

J1
2

)
× cos

(
λ2D (k)

J2
2

)
h1,2D (k)
γ2D (k)

− cos

(
γ2D (k)

J1
2

)
× sin

(
λ2D (k)

J2
2

)
h2,2D (k)
λ2D (k)

. (37)

The implicit T dependence in f2D(k) and g2D(k) are sup-
pressed for brevity. We define γ2D(k) = |h1,2D(k)|, λ2D(k) =
|h2,2D(k)|, χ2D(k) =

coskx+cosky
γ2D(k)λ2D(k)

, and η2D(k) = sinkxσysz−
sinkyσx+α(coskx− cosky)σysx. The eigenvalue equation for
U2D(k,T):U2D(k,T)|Ψ⟩= eiE(k)|Ψ⟩, provides us with the fol-
lowing condition

cosE(k) = f2D (k) , (38)

while the E(k)’s are two-fold degenerate. At k= k∗ =
(0,0) or (π,π), the band gap closes when f2D(k∗) =
±1. Note that, at k= k∗ = (0,0) or (π,π), one finds
that γ2D(0,0) = γ2D(π,π) = 1, λ2D(0,0) = λ2D(π,π) = 2,
and χ2D(0,0) =−χ2D(π,π) = 1. Thus, one may express
f2D(k) in terms of a single cosine function such that
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Figure 12. Floquet generation of 2D SOTI using two-step drive. We
depict the phase diagram in the J1–J2 plane in panel (a). The blue
lines separate four phases: R1, R2, R3, and R4. In panel (b), the
LDOS for the quasi-energies Em = 0, ±π is demonstrated as a
function of the system dimensions. In this case, the system resides in
R4. (c) Quasi-energy spectrum Em is illustrated for a system obeying
PBC in one direction, as a function of ky for R4. The edge modes are
gapped out at both quasi-energy 0 and π. In panels (d)–(g), we show
the quasi-energy spectra Em as a function of the state index m for the
R1, R2, R3, and R4 phases, respectively. The model parameters are
chosen as (J1,2J2) =

[(
π
4 ,

π
2

)
,
(
π
2 ,

π
4

)
,
(
3π
4 , π2

)
,
(
π
2 ,

3π
4

)]
for R1,

R2, R3, and R4, respectively. Reprinted (figure) with permission
from [137], Copyright (2022) by the American Physical Society.

f2D(k∗) = cos
[
γ2D(k∗) J12 ±λ2D(k∗) J22

]
. The gap closing at

these special momenta plays a pivotal role in finding the topo-
logical phase boundaries, and at these points, one can write
equation (36) in a compact form as

cos

(
J1
2
± J2

)
= cosnπ , (39)

where n ∈ Z. Using equation (39), one can obtain the gap clos-
ing conditions in terms of J1 and J2 as

|J2|=
|J1|
2

+ nπ . (40)

Here, equation (40) provides us with the topological phase
boundaries between various Floquet phases, as shown in
figure 12(a). The phase diagram encapsulates four fragments-
region 1 (R1) hosting only 0-mode, region 2 (R2) without any
modes i.e. trivial, region 3 (R3) hosting only π-mode, and
region 4 (R4) accommodating both 0- and π-modes. To exam-
ine the presence of the corner modes numerically, we diag-
onalize the Floquet operator (equation (35)) employing OBC
in both x- and y-directions and illustrate the LDOS for the
quasi-states with quasi-energy Em = 0, ±π in figure 12(b).We
depict the quasi-energy spectra for the phases R1, R2, R3, and
R4 in figures 12(d)–(g), respectively. Here, we would like to
mention that, instead of considering a two-step drive protocol
(equation (33)), one may also employ a three-step drive pro-
tocol as described in [138, 139]. However, the three-step drive
protocol would also produce similar features as obtained for
two-step drive due to the fact that the form of f2D(k∗) remains
unchanged in both the cases.

Figure 13. (a) We depict the phase diagram in the m-J plane for the
mass kick drive protocol. The phase diagram is divided into four
parts: R1, R2, R3, and R4. In panel (b), we illustrate the
quasi-energy spectra Em as a function of time period T. The
appearance of 0- and π-modes can be identified with varying T. The
model parameters are chosen as (m,J ′) = (0.4π,0.5π). Reprinted
(figure) with permission from [137], Copyright (2022) by the
American Physical Society.

4.3. Mass kick in two dimensions

Having demonstrated the step drive protocol to generate the
2D FSOTI phase hosting both 0- and π-modes, we discuss
another protocol namely the periodic kick protocol or the mass
kick protocol [137] to generate the same. Between two suc-
cessive kicks, we employ the Hamiltonian H2D = J ′h2,2D(k)
(see equation (33)), with J′ carrying the dimension of energy.
Similar to the step drive case, here also we employ two dimen-
sionless parameters J= J ′T and m to control the drive. Then,
we introduce the mass kick protocol as

m0 (t) = m h1,2D

∞∑
r=1

δ (t− rT) , (41)

where, m, t, and T denote the kicking parameter’s strength,
time, and the time-period of the drive, respectively. The
Floquet operator, U2D(k,T) for this drive reads as

U2D (k,T) = TOexp

[
−i
ˆ T

0
dt(H2D (k)+m0 (t))

]
,

= exp(−iH2D (k)T) exp(−im h1,2D) . (42)

One obtains the static counterpart of this mass kick protocol by
considering a Hamiltonian of the form HStatic

2D (k) = m h1,2D +
J ′h2,2D(k). Note that, the step drive protocol (equation (33))
mimics the mass kick protocol (equation (41)) if one considers
an infinitesimal duration for the first step Hamiltonian J ′1h1,2D
of the step drive protocol. Following the similar line of argu-
ments as discussed earlier for the step drive, the gap-closing
conditions can be obtained for the mass kick protocol as

2|J|=|m|+ nπ . (43)

The phase diagram for themass kick resembles that of the step-
drive and we illustrate the same in figure 13(a). The eigenvalue
spectra also exhibit a qualitatively similar nature to that of the
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step drive protocol as shown in figures 12(d)–(g) for the phases
R1, R2, R3, and R4, respectively.

The difference between the topological phase boundary
equations (equations (40) and (43)) of the step drive and peri-
odic mass kick drive is the absence of T in the latter case.
Although T is multiplied with both the driving strength in
case of the step drive. However, in the case of periodic mass
kick, the term m in the right-hand side of equation (43) is not
coupled to T. This minute difference compared to the step
drive allows us to investigate a frequency-driven topological
phase transition for this case (see figure 13(b)). In particu-
lar, we choose (m,J ′) = (0.4π,0.5π) so that the system lies in
the phase R2 (without any modes) and increases (decreases)
the time-period T (frequency Ω). First, we cross through R1,
where we obtain only the 0-modes, and then R4, where we
observe the appearance of both the 0- and π-modes. Thus, the
periodic kick protocol can also mediate the frequency-driven
topological phase transition [137, 140].

4.4. Laser irradiation in two dimensions

We now employ an experimentally feasible driving protocol
(laser irradiation) to study the effect of periodic drive on
HOTIs [141]. To implement external irradiation, we consider
a static semimetallic system based on a 2D square lattice. The
Hamiltonian for such a system reads as

HSM =
∑
j,k

[
c†j,kTxcj+1,k+ c†j,kTycj,k+1 + h.c.

]
, (44)

where

Tx =
i t1
2
Γ1 +

t2
2
Γ3 , Ty =

i t1
2
Γ2 +

t2
2
Γ3 , (45)

with t1,2 are the amplitudes of nearest-neighbor hopping. We
employ the following basis: cj,k = {cA↑,cB↑,cA↓,cB↓}T. The
4× 4 Γ matrices are given as Γ1 = σ3τ1, Γ2 = σ0τ2, and
Γ3 = σ0τ3. The Pauli matrices τ and σ act on the orbital
(A,B) and spin (↑,↓) degrees of freedom, respectively. The
HOTI phase is observed, if we add a WD mass term HB =
∆
2

∑
j,k

[
c†j,kσ1τ1cj+1,k− c†j,kσ1τ1cj,k+1 + h.c.

]
[48, 56, 134,

142] with the semimetallic Hamiltonian HSM (equation (44)).
The total HamiltonianH= HSM +HB represents a static SOTI
hosing in-gap localized corner modes [48, 56, 134].

We depict the schematic setup of our system in the presence
of circularly polarized laser irradiation in figure 14(a). Laser
irradiation can be obtained by considering the vector poten-
tial of the form: A(t) = A(cos(ωt),sin(ωt)); with ω being the
driving frequency. To avoid any spatial dependency of the irra-
diation, we assume the beam spot of the external laser to be
larger than that of the system. In comparison to the linearly
polarized light, we choose circularly polarized light since the
latter (former) breaks (preserves) TRS. Apparently, it appears
that the breaking of TRS is important to achieve non-trivial
phases in the driven system [79, 80, 143]. We first consider a
high-frequency limit such that ω ≫ bandwidth of the system.
Afterward, we employ the BW perturbation theory and obtain

Figure 14. (a) We depict a schematic representation of our setup in
presence of an external circularly polarized laser irradiation. In
panel (b), we illustrate different drive-generated higher-order
hoppings. Here, the nearest-neighbor renormalized hoppings are
represented by T1, and T2, while the drive-induced high-order
hopping parameters in different directions are denoted by T3, T4,
T5, and T6. In panel (c), we demonstrate the quasi-energy spectrum
as a function of the quasi-states index m. The four corner-state
eigenvalues are denoted by red dots in the inset. (d) The LDOS
distribution is depicted as a function of the system dimension
choosing Em = 0. One can clearly identify that the zero-quasienergy
states are populated at the four corners of the system. Reprinted
(figure) with permission from [141], Copyright (2020) by the
American Physical Society.

an effective Floquet Hamiltonian as a power series in 1/ω [83].
However, we keep only the leading order term in the series as
it contributes significantly to the emergent important physical
phenomena. The BW effective Hamiltonian reads as [83]

HBW =
∞∑
r=0

H(r)
BW , (46)

with

H(0)
BW =H0, H(1)

BW =
∑
n̸=0

H−nHn

nω
, H(2)

BW =O
(

1
ω2

)
.

(47)

The Fourier components Hn’s are provided in equation (25).
Therefore, using the BW expansion (equation (46)), we com-
pute the effective Floquet Hamiltonian for our driven system
such that

H(0)
BW =

∑
j,k

[
c†j,kT1cj+1,k+ c†j,kT2cj,k+1 + h.c.

]
,

H(1)
BW =

∑
j,k

c†j,kMcj,k+
∑
j,k

[
c†j,kT3cj+1,k+1 + c†j,kT4cj+2,k

+c†j,kT5cj,k+2 + c†j,kT6cj−1,k+1 + h.c.
]
, (48)
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with

M= J2
(
t21 + t22 +∆2

)
σ0τ0 ,

T1 =
J0 (A)

2
(i t1σ3τ1 + t2σ0τ3 +∆σ1τ1) ,

T2 =
J0 (A)

2
(i t1σ0τ2 + t2σ0τ3 −∆σ1τ1) ,

T3 = Jc1
(
t22 −∆2

)
σ0τ0 + Js1

(
t21σ3τ3 + it1t2σ3τ2 + it1t2σ0τ1

+2t2∆σ1τ2 + it1∆σ2τ0 − it1∆σ1τ3) ,

T4 = J1
(
t22 − t21 +∆2

)
σ0τ0 ,

T5 = J1
(
t22 − t21 +∆2

)
σ0τ0 ,

T6 = Jc2
(
t22 −∆2

)
σ0τ0 − Js2

(
t21σ3τ3 + it1t2σ3τ2 − it1t2σ0τ1

−2t2∆σ1τ2 + it1∆σ2τ0 + it1∆σ1τ3) , (49)

where,

J1 =
∑
n̸=0

(−1)nJ 2
n (A)

4nω
, Jc1 =

∑
n̸=0

(−1)nJ 2
n (A)cos

(
nπ
2

)
2nω

,

Js1 =
∑
n̸=0

(−1)nJ 2
n (A)sin

(
nπ
2

)
2nω

J2 =
∑
n̸=0

J 2
n (A)
nω

,

Jc2 =
∑
n̸=0

J 2
n (A)cos

(
nπ
2

)
2nω

, Js2 =
∑
n̸=0

J 2
n (A)sin

(
nπ
2

)
2nω

. (50)

Here, Jn is the Bessel function of the first kind and A is the
amplitude of the drive.

From equation (44), one can observe that the 0th-order
Hamiltonian H0 is analogous to the unperturbed static
Hamiltonian with renormalized hopping amplitudes T1 and
T2. While the term with O(1/ω) encompasses new drive-
generated long-range hoppings [80, 83, 143]. These terms are
represented by T3, T4, T5, and T6. We depict these hopping
parameters schematically in figure 14(b).

We now discuss the primary numerical results obtained
employing laser irradiation. The FSOTI phase is identi-
fied by the emergence of zero-quasienergy Floquet corner
modes [138, 144, 145]. We illustrate the eigenvalue spec-
trum of the BW Hamiltonian in figure 14(c). One can clearly
identify the presence of four zero-quasienergy states (repres-
ented by the red dots) from the inset of figure 14(c). The
signatures of these zero-quasienergy Floquet corner modes
can be understood via the LDOS computed at quasienergy
E= 0. We show the corresponding LDOS associated with
the Floquet corner modes in figure 14(d) as a function of
the two spatial dimensions Lx and Ly. The zero-quasienergy
states are localized at the four corners of the system. Thus,
the 0D Floquet corner modes are robust against the high-
frequency laser irradiation drive and pinned at zero quasien-
ergy in a driven setup. We also topologically characterize
these Flqouet corner modes by computing the quadrupole
moment, Qxy. For that, we follow a similar procedure as
discussed in section 2.1.1. However, no driving strength A
dependent phase transition is observed rather Qxy always
exhibits 0.5 (mod 1) for any value of A. Nevertheless, the
Floquet corner modes that appear in this driven system are
different in nature when compared to the static ones. In a
driven system, the manifestation of topological modes is due
to the virtual photon transitions between different Floquet
sub-bands [82].

Having demonstrated the emergence of the FHOTI phase in
the high-frequency limit, we now investigate the system when
the frequency of the driving photon field is comparable to the
bandwidth of the system, such that ω ∼ bandwidth. In such a
limit, one can obtain the dressed corner modes. However, in
that limit, any perturbation theory breaks down [79, 80, 146].
Thus, one may consider a truncated Hamiltonian up to some
Floquet zone sectors from the infinite-dimensional Floquet
Hamiltonian H∞

F (equation (26)). In particular, we choose
up to the m= 4 zone, and the curtailed Hamiltonian reads as

H̃F =



H0 − 3ω H1 H2 H3 0 0 0
H−1 H0 − 2ω H1 H2 H3 0 0
H−2 H−1 H0 −ω H1 H2 H3 0
H−3 H−2 H−1 H0 H1 H2 H3

0 H−3 H−2 H−1 H0 +ω H1 H2

0 0 H−3 H−2 H−1 H0 + 2ω H1

0 0 0 H−3 H−2 H−1 H0 + 3ω


, (51)

where

H0 =
∑
j,k

[
c†j,kT1cj+1,k+ c†j,kT2cj,k+1 + h.c.

]
, H1 =

∑
j,k

[
c†j,kT3cj+1,k+ c†j,kT4cj,k+1 + h.c.

]
,

H2 =
∑
j,k

[
c†j,kT5cj+1,k+ c†j,kT6cj,k+1 + h.c.

]
, H3 =

∑
j,k

[
c†j,kT7cj+1,k+ c†j,kT8cj,k+1 + h.c.

]
, (52)
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with

T1 =
J0 (A)

2
(i t1σ3τ1 + t2σ0τ3 +∆σ1τ1) , T2 =

J0 (A)
2

(i t1σ0τ2 + t2σ0τ3 −∆σ1τ1) ,

T3 =
J1 (A)

2
(t1σ3τ1 − i t2σ0τ3 − i∆σ1τ1) , T4 =

J1 (A)
2

(i t1σ0τ2 + t2σ0τ3 −∆σ1τ1) ,

T5 =
J2 (A)

2
(−i t1σ3τ1 − t2σ0τ3 −∆σ1τ1) , T6 =

J2 (A)
2

(i t1σ0τ2 + t2σ0τ3 −∆σ1τ1) ,

T7 =
J3 (A)

2
(−t1σ3τ1 + i t2σ0τ3 + i∆σ1τ1) , T8 =

J3 (A)
2

(i t1σ0τ2 + t2σ0τ3 −∆σ1τ1) . (53)

For this intermediate frequency regime, we depict the numer-
ical results obtained from the diagonaliztion of H̃F (see
equation (51)) in figure 15. The quasi-energy spectrum is
shown around 0 (modulo ω) in figure 15(a). Here, by consid-
ering the modulo operation, we have transmuted the modes
appearing at quasi-energy nω (n ∈ Z) to quasi-energy 0. The
four 0 (modulo ω) dressed modes are depicted by red dots.
One can compute the LDOS for the 0 (modulo ω) dressed
modes to identify their corner localization. It is evident from
figure 15(b) that the dressed corner modes are located at the
four corners of the system. Afterward, one can calculate the
quadrupole moment for the mth Floquet zone as Qxy,m to
topologically characterize these dressed corner modes. We
observe that Qxy,m = 0.5 (mod 1) for all the Floquet zone i.e.
m= 0,1,2,3.

4.5. Perturbation kick in three dimensions

So far, we have focused our discussion on 2D systems
to generate FHOTI employing different kinds of time-
dependent periodic modulations. Now, we switch to a 3D
system, where we can generate FSOTI hosting 1D gapless
hinge modes and Floquet TOTI (FTOTI) manifesting 0D
corner modes. We employ the following static 3D FOTI
Hamiltonian [17, 117, 147] to dynamically generate a 3D
FHOTI,

Hstat
FOTI = t

3∑
j=1

Γj Sj+Γ4

(m− 6t0)+ 2t0

3∑
j=1

Cj


≡

4∑
j=1

Nj (k) Γj, (54)

where we define Sj ≡ sin(kja),Cj ≡ cos(kja); k being the crys-
tal momentum. We set the lattice constant a= 1 for con-
venience. The 4× 4 mutually anticommuting Γ matrices are
given as Γi = σ1τi with i = 1,2,3, and Γ4 = σ3τ0. The Pauli
matrices τµ and σµ act on the orbital and spin degrees of free-
dom, respectively. The band inversion takes place at the high-
symmetry Γ = (0,0,0)-point of the Brillouin zone when 0<
m
t0
< 4. One obtains gapless 2D surface states with a crossing

around zero-energy, ensured by anti-unitary particle-hole
symmetry P= σ2τ2K and unitary spectral symmetry C=
Γ5(= σ2τ0), with K being the complex conjugation oper-
ator. The LDOS associated with the zero-energy states of the
Hamiltonian Hstat

FOTI (equation (54)) obeying OBC in all three

directions is depicted in figure 16(a). One can identify that the
gapless states are populated at the surfaces of the system.

4.5.1. FSOTI. To dynamically generate a 3D FSOTI, we
introduce a periodic kick in FOTI by the following WD mass
term as [117]

V (̃t) = V1 Γ5

∞∑
r=1

δ (̃t− r T) , (55)

where V1 =
√
3∆1 (cosk1 − cosk2) is the four-fold C4 rota-

tion symmetry breaking WD mass and T is the period of
the kick and t̃ represent time and r ∈ Z. One obtains the
static counterpart of this driven system by considering a
Hamiltonian Hstat

SOTI = Hstat
FOTI +V1Γ5. Here, V1Γ5 opens up a

gap in the surface states of the FOTI. However, V1 changes
its sign across the xz and yz surfaces and one obtains 1D
gapless hinge modes at the intersecting region along the
z-axis [36]. Now we showcase the consequences when a
static FOTI (equation (54)) is periodically kicked by such
a WD mass (equation (55)). On this account, we construct
the Floquet operator associated with the driven Hamiltonian
Hstat

FOTI +V(̃t) as

U(k,T) = TO

(
exp

[
−i
ˆ T

0

[
Hstat

FOTI +V (̃t)
]
d̃t

])
,

= exp
(
−iHstat

FOTI T
)
exp(−iV1 Γ5) . (56)

One can obtain a closed-form effective Floquet Hamiltonian
HFlq = i ln(U(k,T))/T in the high-frequency limit by employ-
ing the limits: T→ 0, V1 → 0, but V1/T is finite. Thus one
obtains

HHF
Flq =

4∑
j=1

Nj (k)Γj+V1

4∑
j=1

Nj (k)Γj5 +
V1

T
Γ5 . (57)

The effective Floquet Hamiltonian (HFlq or HHF
Flq) respects the

antiunitary particle-hole symmetry P.
To demonstrate the footprints of the 1D gapless hinge

modes of the FSOTI, we tie up with numerical analysis. We
diagonalize the Floquet operator in equation (56), satisfying:
U(k,T) |ϕn⟩= exp(iµnT) |ϕn⟩; with |ϕn⟩ being the Floquet
quasi-states having quasi-energy µn. We employ OBC in all
three directions and depict the LDOS associated with the
zero-quasienergy states in figure 16(b). One can identify that
the zero-quasienergy states are sharply populated along the
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Figure 15. We depict the quasi-energy spectrum highlighting
around quasi-energy 0 (modulo ω) in panel (a). In panel (b), the
LDOS at ϵm = 0 (modulo ω) for A ̸= 0 is shown. Here, we choose
A= 0.5 and ω= 3.0. Reprinted (figure) with permission from [141],
Copyright (2020) by the American Physical Society.

Figure 16. LDOS corresponding to (a) surface states of a static
FOTI (involving eight-dimensional Γ matrices), (b) dynamic hinge
modes of Floquet SOTI (by periodically driving a static FOTI by
V1), and (c) dynamic corner modes of Floquet TOTI (by
periodically driving a static FOTI by V1 and V2) is demonstrated.
We choose the model parameters as t= t0 = 1, m= 2,
∆1 =∆2 = 0.3, and ω = 10≫ t, t0 (assuring the high-frequency
regime), see equation (59). We also find dynamic corner modes as in
panel (c), when a static SOTI is periodically driven by only V2.
Throughout LDOS is normalized by its maximum value. Reprinted
(figure) with permission from [117], Copyright (2021) by the
American Physical Society.

z-directed hinges such that the modes are localized along x-
and y-direction but propagating along the z-direction. Thus,
one obtains an FSOTI hosting gapless dispersive 1D hinge
modes by periodically kicking static FOTI with a WD mass
term. Similarly, by breaking the C4 symmetry about the x or y
axis, one can procure the hinge modes along the same axis.

4.5.2. FTOTI. Having demonstrated the generation of 3D
FSOTI, we now investigate the generation of 3D FTOTI host-
ing 0D corner modes using the periodic kick. Note that, one
can find a maximum of five mutually anticommuting 4× 4
hermitian matrices. However, we have already exhausted all
five matrices to generate a 3D SOTI (static or dynamic). Thus,
to proceed with the generation of the next hierarchical phase of
HOTI i.e. TOTI, by gapping out the z hinges, we need to intro-
duce 8× 8mutually anticommutingΓmatrices [117]. One can
find seven mutually anticommuting 8× 8 hermitian matrices.
We employ the following representation of seven mutually
anticommuting 8× 8 Hermitian Γ matrices as

Γ1 =Σ1σ1τ1,Γ2 =Σ1σ1τ2,Γ3 =Σ1σ1τ3,Γ4 =Σ1σ3τ0,

Γ5 =Σ1σ2τ0, Γ6 =Σ3σ0τ0, Γ7 =Σ2σ0τ0. (58)

We denote Pauli matricesΣµ operate on the sublattice degrees
of freedom. Afterward, we periodically kick a static FOTI
(equation (54)) by two WD masses [117]

V (̃t) = (V1 Γ5 +V2 Γ6)
∞∑
r=1

δ (̃t− r T) , (59)

where V2 =∆2(2cosk3 − cosk1 − cosk2).
Before exploring the driven case, let us first try to under-

stand the static counterpart which is given by the following
Hamiltonian

Hstat
TOTI = Hstat

FOTI +V1 Γ5 +V2 Γ6 ≡ Hstat
SOTI +V2 Γ6. (60)

One can observe that whenV2 = 0, the aboveHamiltonian rep-
resents a SOTI hosting 1D gapless hinge modes. While the
second WD mass term V2 vanishes only along eight body-
diagonal (±1,±1,±1) when V1 is present. Thus, the addi-
tion of the second mass term V2 gaps out the hinge states of
SOTI and supports eight zero-energy localized corner modes.
Hence, the system becomes a TOTI. The antiunitary particle-
hole symmetry P=Σ1σ2τ2K and unitary chiral symmetry
C= Γ7 are responsible for the stabilization of the corner states
at zero energy.

Now, we demonstrate a periodic kick in two WD mass
terms (equation (59)), to dynamically generate the FTOTI
hosting corner modes at zero quasi-energies. With this peri-
odic kick, one can construct the Floquet operator as U(k,T) =
exp(−iHstat

FOTI T)exp(−iV1Γ5 − iV2Γ6). The effective Floquet
Hamiltonian is thus obtained from the Floquet operator, in the
high-frequency limit (with T,V1,V2 → 0 but V1/T and V2/T
are finite) as

HHF
Flq =

4∑
j=1

Nj (k) [Γj+V1Γj5 +V2Γj6] +
2∑

j=1

Vj
T

Γj+4 . (61)

The spectral symmetry of HHF
Flq is respected by the antiunit-

ary operator P=Σ1σ2τ2K. To obtain the footprints of a
3D FTOTI, we diagonalize the Floquet operator by employ-
ing OBC along all three directions and compute the LDOS
at quasi-energy zero. The corner-localization of the zero-
quasienergy modes is evident from figure 16(c).

On the other hand, one may also start from a static SOTI
model Hamiltonian Hstat

SOTI and periodically kick the system
employing the WD mass V2. In this case, the Floquet operator
reads asU(k,T) = exp(−iHstat

SOTI T)exp(−iV2Γ6). The corres-
ponding effective Floquet Hamiltonian in the high-frequency
limit reads as

HHF
Flq =

5∑
j=1

Nj (k)Γj+V2

5∑
j=1

Nj (k)Γj6 +
V2

T
Γ6 , (62)

where N5(k)≡ V1. This driven setup also provides us with
an FTOTI hosing localized corner modes (see figure 16). To
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topologically characterize this FTOTI, we compute the octu-
polar moment Oxyz using the Floquet operator (see section 2.3
and [111, 112] for details). The system exhibits Oxyz = 0.5
(mod 1), which topologically characterizes a TOTI.

4.6. Step drive in three dimensions

In the previous subsection, we discuss periodic kick pro-
tocol to generate 3D Floquet HOTI hosting only 0-quasienergy
modes. Here, we showcase another driving protocol- step-
drive protocol to generate both 0- and π-modes in 3D systems.
This driving protocol resembles that we have implemented in
section 4.2 to generate 2D FSOTI. Nevertheless, we introduce
the two-step drive as follows [137]

H3D = J ′1h1,3D(k) , t ∈

[
0,
T
2

]
,

= J ′2h2,3D(k) , t ∈

(
T
2
,T

]
. (63)

As before, we define two dimensionless parameters (J1,J2) =
(J ′1T,J

′
2T) to control the drive protocol. At the first driving step,

we use h1,3D(k) = µxσz whereas in the send step, we employ
h2,3D(k) = (coskx+ cosky+ coskz)µxσz+ sinkxµxσxsx+
sinkyµxσxsy+ sinkzµxσxsz+α(coskx− cosky)µxσy+
β(2coskz− coskx− cosky)µz [117, 137]. We tune the dimen-
sionless parameters α and β to systematically generate the
hierarchy of FSOTI and FTOTI phases. The terms associated
with α and β denote the WD mass terms as discussed in the
previous subsection. The three Pauli matrices µ, σ, and s act
on sublattice (A,B), orbital (a, b), and spin (↑,↓) degrees of
freedom, respectively.

Before proceeding with the dynamical case, we first discuss
the static analog of the model. In particular, we consider the
following Hamiltonian

HStatic
3D (k) =J ′1h1,3D (k)+ J ′2h2,3D (k) . (64)

One can tune α and β to observe the hierarchy of
first-, second-, and third-order topological phases. By setting
α= β = 0, we turn off both the WD mass terms. In this case,
the Hamiltonian HStatic

3D (k) exhibits a FOTI hosting gapless 2D
surface states in the strong TI phasewhen 0< |J ′1|< 3|J ′2|, [17,
117, 148]. As we set α to a non-zero value, the surface states
of the 3D FOTI are gapped out, but we observe gapless states
across the hinges of the system, designating a SOTI phase [32,
36, 117, 148]. On the other hand, for both α,β ̸= 0 the system
becomes a TOTI manifesting localized 0D corner modes [32,
117, 148].

Moving our attention to the dynamical case, one can follow
a similar procedure as discussed in section 4.2 and obtain the
phase boundaries in terms of J1 and J2 as

3|J2|
2

=
|J1|
2

+ nπ , (65)

where n ∈ Z. The phase diagrams, in the J1–J2 plane, remain
unaltered for FSOTI and FTOTI in 3D (see figures 17(a)

Figure 17. (a) We demonstrate the phase diagram in the J1–J2 plane
for a 3D FSOTI. (b) Quasi-energy spectrum, Em for the finite size
system, is shown as a function of the state index, m for R4. (c) The
corresponding LDOS is depicted considering quasi-states with
Em = 0, ±π in R4. The quasi-energy spectra Em, considering rod
geometry along kz, corresponding to R1, R2, R3, and R4, are shown
in panels (d)–(g), respectively. The chosen model parameters are:
(J1,3J2) =

[(
π
4 ,

π
2

)
,
(
π
2 ,

π
4

)
,
(
3π
4 , π2

)
,
(
π
2 ,

3π
4

)]
for R1, R2, R3,

and R4, respectively. Reprinted (figure) with permission from [137],
Copyright (2022) by the American Physical Society.

and 18(a), respectively) as equation (65) is independent of α
and β. Thus, similar to the 2D case (see section 4.2), the phase
diagram is divided into four parts in the J1–J2 plane- R1, R2,
R3, and R4.

4.6.1. FSOTI. We set α ̸= 0 and β= 0, to realize the FSOTI
phase. The corresponding phase diagram is illustrated in
figure 17(a). We diagonalize the Floquet operator employing
OBC in all three directions.We depict the quasi-energy spectra
in figure 17(b), when the system resides in the R4 phase with
both the Floquet modes present. One can clearly identify the
existence of both 0 and π-modes. Afterward, we demonstrate
the LDOS corresponding to quasistates with Em = 0, ±π for
R4, in figure 17(c). We observe that both the 0- and π-modes
are populated along the z-hinges of the system. However, to
notice the dispersive nature of the hinge modes, we resort to
rod geometry i.e. PBC in one direction (z-direction) and OBC
in the remaining two directions (x and y-direction). We show
the rod geometry quasi-energy spectra in figures 17(d)–(g) for
R1, R2, R3, and R4, respectively. Thus, employing this two-
step periodic drive, one can generate 3D FSOTI exhibiting
gapless modes around quasi-energy 0 and π.

4.6.2. FTOTI. When we set both α and β to a non-zero
value, we can obtain the FTOTI phase. We depict the phase
diagram to highlight the FTOTI in figure 18(a) choosing the
J1–J2 plane. We show the LDOS, computed at Em =±π for
R4, as a function of the system dimensions in figure 18(b).
From the latter, one can clearly identify that both the 0- and π-
modes are localized at the eight corners of the system. Both the
bulk and hinge states of an FTOTI exhibit a gapped structure.
We demonstrate the quasi-energy spectrum employing rod
geometry i.e. we consider OBC along x and y-directions, PBC
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Figure 18. (a) We illustrate the phase diagram in the J1-J2 plane for
the 3D FTOTI. (b) Corner localized modes corresponding to
quasi-energies Em = 0, ±π are shown via LDOS for the finite-size
system in R4. (c) Quasi-energy spectrum Em for this system,
considering rod geometry, is depicted as a function of kz. This
manifests that the hinge modes (both 0 and ±π) are gapped out. The
quasi-energy spectra Em, for a finite size system and as a function of
the state index m, corresponding to R1, R2, R3, and R4 are shown in
panels (d)–(g), respectively. We choose the same model parameter
values as mentioned in figure 17. Reprinted (figure) with permission
from [137], Copyright (2022) by the American Physical Society.

along z-direction in figure 18(c) (for R4). It is evident that the
hinge modes are gapped around both 0 and ±π quasi-energy.
Here, the second WD mass term β(2coskz− coskx− cosky)
is responsible for gapping out the hinge states [117]. Then, we
consider OBC along all three directions and depict the corres-
ponding quasi-energy spectra in figures 18(d)–(g) for R1, R2,
R3, and R4, respectively. The 0 and π corner states are denoted
by red and green dots respectively in the insets.

4.7. Mass kick in three dimensions

For the mass kick drive protocol, we consider the Hamiltonian
H3D between two successive kicks. Afterward, we introduce
the driving protocol as [137]

m0 (t) = m h1,3D

∞∑
r=1

δ (t− rT) , (66)

where, m, t, and T signify the kicking parameter’s strength,
time, and time-period of the drive, respectively. Following the
periodic kick protocol, one can construct the Floquet operator,
U3D(k,T) as

U3D (k,T) = TOexp

[
−i
ˆ T

0
dt(H3D (k)+m0 (t))

]
,

= exp(−iH3D (k)T) exp(−im h1,3D) . (67)

We choose H3D(k) = J ′h2,3D(k). Employing this mass kick
protocol, one can obtain the gap-closing condition as

3|J|=|m|+ nπ . (68)

The nature of the phase boundary remains invariant for all the
topological orders i.e. FSOTI and FTOTI. The corresponding
phase boundaries are shown in figure 19.

Figure 19. (a) Phase diagram for the kick-driving protocol is
depicted in the m-J plane for a 3D FSOTI/FTOTI. Reprinted (figure)
with permission from [137], Copyright (2022) by the American
Physical Society.

For the sake of completeness, we discuss the numerical res-
ults obtained for the mass kick drive protocol in three dimen-
sions. When α ̸= 0 but β= 0, the system exhibits FSOTI host-
ing gapless 1D hinge modes. The corresponding dispersive
signature is manifested in the quasi-energy spectrum employ-
ing rod geometry (similar to figures 17(d)–(g)). On the other
hand, the FTOTI phase is obtained, when α,β ̸= 0. In the
FTOTI phase, the trace of the corner localized modes (at Em =
0,±π) are found in the quasi-energy spectrum for a system
obeying OBC in all three directions (akin to figures 18(d)–(g)).
However, we do not intend to show these behavior in order to
avoid repetition.

5. Discussions and outlook

In this section, we discuss the current challenges and future
opportunities. To be precise, the detrimental effects of dis-
order, interaction, temperature are very much relevant for the
generation and further stabilization of a dynamic topological
phase. There exist plenty of relevant tunable parameters for the
driven systems that cannot onlyminimize the above challenges
but also open up future opportunities for technological solu-
tions. In this regard, throughout this review, we have treated
our systems as clean i.e. disorder-free and at zero temperat-
ure. Although, this might not be the case in a practical situ-
ation. Nevertheless, corner modes should be persistent in the
presence of weak disorder and at finite temperature, with the
disorder and temperature scale being smaller than the bulk
bandgap of the system. However, the effect of strong disorder,
with its strength being comparable to the bandwidth and in
the presence of external irradiation, can be fascinating as far
as the Anderson insulator phase is concerned. Also, the gen-
eration of corner modes at quasi-energy ω/2 employing peri-
odic laser irradiation still remains an open question. Moreover,
temperature/ heat up effect and temporal disorder effects are
unexplored so far in the field of Floquet TI to the best of our
knowledge.
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The interplay of disorder and Floquet engineering can
result in the intriguing phase called Floquet topological
Anderson insulator [149–151] where a periodically driven
trivial system becomes topological in the presence of dis-
order with anomalous Floquet boundary modes. On the other
hand, the static Anderson phase has been contextualized for
the higher-order topological system in the current literat-
ure [114, 152–155]. However, realizing the Floquet higher-
order topological Anderson insulator (FHOTAI) phase with
anomalous boundary modes is still lacking in the literature.
The main challenge here is to find an appropriate topolo-
gical invariant in real space that can serve the purpose of
the marker indicating the topological phase transition in the
dynamical sector. Thus, there is a need for developing a topo-
logical invariant that can topologically characterize an anom-
alous higher-order Floquet topological mode in the presence
of strong disorder (FHOTAI phase).

In another direction, it has already been established that the
topological phases can be realized in a system with substantial
electro–electron correlation (Hubbard interaction). Especially,
extensive investigation has been performed in the case of
first-order topological systems, in particular the Kane–Mele–
Hubbard model [156–158]. The presence of strong Coulomb
interaction gives rise to a new phase called ‘topological Mott
insulator’. Therefore, in the context of higher-order topolo-
gical systems, the effect of strong correlations can be an inter-
esting research direction considering systems like breathing
Kagome lattice [40], modified Haldane model on a hexagonal
lattice [159], and multiorbital models like BHZ model with a
C4-symmetry breaking WD mass term [36], etc. The expec-
ted primary outcome can be the generation of higher-order
topological Mott insulators with anti-ferromagnetic/other
magnetic order, topological phase transition induced via
strong correlation, etc. Although, understanding and char-
acterization of any interaction-driven topological phase via
appropriate topological invariant remains a challenging
task.

Moreover, another intriguing aspect of the time-dependent
system, apart from generating the dynamical topological
phases, is the robustness of the topological states. In this dir-
ection, the fate of the topologically protected states of FOTIs
has been investigated upon applying time-dependent perturb-
ation [160]. It has been observed that although the topolo-
gical characteristics of the bulk remain intact, the edges tend
to depopulate [160]. Thus, it would be interesting to perform a
similar study based on the higher-order systems and investig-
ate whether the higher-order modes also exhibit similar beha-
vior compared to the first-order modes.

6. Experimental developments and material
perspectives

The quest for HOTIs has surged for the last five years
after their theoretical discovery. The 2D quadrupolar and
3D octupolar topological phases have been realized experi-
mentally employing metamaterial platforms mainly phononic
crystals [61], acoustic systems [51, 62–64], electric-circuit

setups [65], and photonic lattice [66–68] etc. Noticeably,
3D SOTI hosting gapless dispersive 1D hinge modes has
been proposed in SnTe (based on first-principle calcula-
tions) [36] and realized experimentally in bismuth hallide [56,
58], Bi0.92Sb0.08 [58], bismuth-bromide (Bi4Br4) [57, 59], and
WTe2 [60] etc. However, there is not much experimental evid-
ence of 2D SOTI and 3D TOTI based on solid state systems.
Thus the experimental development in the field of HOTI is still
in its infancy as far as the real material platform is concerned.

On the other hand, the theoretical analysis of Floquet engin-
eering of band topology has also accelerated a few tantaliz-
ing experimental observations [89, 102–110]. However, in a
solid-state or real material platform, the observation of Floquet
states are limited to time-resolved and angle-resolved photoe-
mission spectroscopy study of Floquet–Bloch states in Bi2Se3
surface [102, 103] and detection of light-induced QAH effect
in graphene [104]. Moreover, in a few cold-atomic systems,
such Floquet states have been experimentally predicted [105,
106]. As far as the experimental generation of FHOTIs is con-
cerned, there has been one proposal based on accoustic setup
utilizing the step drive protocol to realize this phase [161].
Therefore, note that the setups that we discuss in the con-
text of FHOTIs in this present review are yet to be realized
from the experimental point of view in real materials and thus
open up a plethora of future experimental research directions.
However, the development of sophisticated experimental tech-
niques to investigate and engineer time-dependent systems
would facilitate the generation of FHOTIs in a real material
platform.

7. Summary and conclusions

To summarize, in this topical review, we have provided a intro-
duction to the new emerging field of HOTI and their driven
counterpart FHOTI in quantum condensed matter physics.
In these intriguing nth-order HOTI phases, gapless/localized
boundary modes reside on (d− n)-dimensional boundaries of
a d-dimensional system, rather gapless (d− 1)-dimensional
boundarymodes in FOTIs.We showcase various periodic driv-
ing protocols to generate FHOTI in two and three dimen-
sions. We demonstrate that some of the driving protocols
also allow us to realize both 0 as well as the dynamical π
higher-order modes. The latter do not have any static ana-
log. In particular, we discuss the development in which a per-
turbation kick protocol, a two-step drive protocol, a mass-
kick protocol, and laser irradiation are individually employed
to generate 2D FSOTI hosting 0D corner modes. In three
dimensions, we introduce similar kind of periodic drive pro-
tocols i.e. perturbation kick, step drive, and mass kick pro-
tocol to achieve the higher-order Floquet phases. Interestingly,
one can generate two topological orders in three dimensions-
FSOTI hosting 1D gapless dispersive hinge modes and FTOTI
manifesting 0D localized corner modes. On the experimental
side, fabricating different setups of fermionic systems to real-
ize HOTI as well as their driven counterpart FHOTI still
remains a challenging task. From the application point of
view, the topological propagating 1D hinge modes can be
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potential candidate towards future spintronics applications and
0D localized corner modes can be the building block for the
fault-tolerant topological quantum computation. All in all,
there are still surprises in store as we probe deeper into the
realm of static/driven topological quantum matter along with
substantial experimental challenges.
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