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After exploring much on two-dimensional higher-order topological superconductors (HOTSCs) hosting Majo-
rana corner modes (MCMs) only, we propose a simple fermionic model based on a three-dimensional topological
insulator proximized with s-wave superconductor to realize Majorana hinge modes (MHMs) followed by MCMs
under the application of appropriate Wilson-Dirac perturbations. We interestingly find that the second-order
topological superconductor, hosting MHMs, appears above a threshold value of the first type perturbation
while the third-order topological superconducting phase, supporting MCMs, immediately arises incorporating
infinitesimal perturbation of the second kind. Thus, a hierarchy of HOTSC phases can be realized in a single
three-dimensional model. Additionally, the application of bulk magnetic field is found to be instrumental in
manipulating the number of MHMs, leaving the number for MCMs unaltered. We analytically understand
these above-mentioned numerical findings by resorting to the low-energy model. We further characterize these
topological phases with a distinct structure of the Wannier spectra. From the practical point of view, we manifest
quantized transport signatures of these higher-order modes. Finally, we construct Floquet engineering to generate
the hierarchy of HOTSC phases by kicking the same perturbations as considered in their static counterpart.
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I. INTRODUCTION

The advent of Majorana zero modes (MZMs) in topologi-
cal superconductors (TSCs) prepares this field very relevant in
the context of quantum information and topological quantum
computations [1–7]. Till date, there exist a variety of proposals
based on heterostructures with spin-orbit coupling (SOC),
such as one-dimensional (1D) nanowire with proximity in-
duced s-wave superconductivity that have been employed
to engineer the MZMs [8–12]. In recent times, the higher-
order topological (HOT) phases, harboring boundary modes
of lower dimension than their usual one, have been proposed
with unconventional bulk-boundary correspondence. To pose
a formal definition, an nth-order topological insulator [13–23]
or superconductor [24–49] in d dimensions is characterized by
the existence of nc = (d − n)-dimensional boundary modes.
This bulk-boundary correspondence is further enriched for
driven systems where nontrivial winding wave functions in
the temporal direction lead to dissipationless Floquet HOT
insulator (FHOTI) [50–63] and superconductor (FHOTSC)
phases [64–66,66–68].

Very recently, a plethora of theoretical proposals have
been put forward for realizing second-order topological super-
conductor (SOTSC) hosting zero-dimensional (0D) Majorana
corner mode (MCM) in two dimension (2D) and 1D Majo-
rana hinge mode (MHM) in three dimension (3D) [24–49].
However, the search for the 0D MCMs as a signature of
third-order topological superconductor (TOTSC) in 3D is still
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in its infancy [23,46–48,69,70]. We note that the previous
studies mostly rely on unconventional/odd parity supercon-
ductivity [31,46,69,70]. Therefore, a fundamental question
remains, which is whether the TOTSC phase can be perceived
employing the conventional s-wave superconductivity that we
intend to answer here. Motivated by the studies on FHOTIs
and FHOTSCs in 2D, the other relevant question is how to
engineer the FHOTSC phases by periodically driving the ap-
propriate perturbations in 3D [50–68]. From the application
point of view, the SOTSC (2D) and TOTSC (3D), harbor-
ing 0D MCMs, can become a more suitable candidate for
topological quantum computation compared to the other 1D
nanowire models where MZMs have been realized [10,12]. In
1D wire networks, one has to engineer a T junction for the
braiding of MZMs [71]. Although it is possible to exchange
the MZMs strictly in 1D, but there might not be strong topo-
logical protection [72,73]. However, in case of higher-order
topological superconductor (HOTSC), there exists specially
separated localized 0D MCMs in 2D and 3D, which can
provide a better platform for braiding of nonlocal MCMs.
Thus, non-Abelian statistics due to exchange of the MCMs
can be naturally expected to become feasible in HOTSC sys-
tems [41]. However, to the best of our knowledge, no proposal
has been reported so far regarding the advantage of TOTSC
(3D) compared to SOTSC (2D) as far as braiding of nonlocal
MCMs is corcerned. Additionally, given the recent develop-
ments on 3D HOTI models [13,59], it is worth investigating
a theoretical model for TOTSC. However, the real materials,
hosting SOTSC/TOTSC phases, are yet to be discovered and
no experiment has been carried out so far, in this regard,
to the best of our knowledge. On the other hand, given the
experimental progress on realization of HOT phases in solid-
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FIG. 1. Schematic of our setup is demonstrated in which a cubic
3D TI (grey) is placed in close proximity to a bulk s-wave supercon-
ductor (light blue, light grey). When �1 �= 0 but �2 = 0, MHMs are
present as marked by the green (grey) line. For �1,2 �= 0, MCMs
appear as depicted by the purple (dark grey) dots. Blue and red
arrows denote the propagation direction of MHMs.

state systems [74,75] and metamaterials [76–81], we believe
that our quests are very timely and authentic as far as the
theoretical advancement of the HOT field is concerned.

In this paper, we come up with a model to systematically
realize MHMs in SOTSC and MCMs in TOTSC, starting
from a 3D topological insulator (TI) proximized by s-wave
superconductivity, through applying appropriate perturbations
(see Fig. 1 and Fig. 2) in bulk. The effect of a bulk magnetic
field remarkably imprints its effect on the SOTSC while the
TOTSC remains unaffected. We topologically characterize
such phases by investigating the Wannier spectra (WS) (see
Fig. 3). We also exhibit the signature of the SOTSC phase by
calculating the differential conductance through the MHMs
following a system-lead setup (see Fig. 3). This further en-
riches the experimental relevance of our paper. Moreover, we
extend our analysis to selectively generate FHOTSC phases
starting from a trivial superconducting phase in 3D (see
Fig. 5).

The remainder of the paper is organized as follows. In
Sec. II, we introduce and motivate our model along with
the discussion of various phases available for the system.
Emergence of SOTSC and TOTSC is discussed in Sec. III
and the detail derivation of the surface Hamiltonian, hinge
Hamiltonian, and corner mode solutions are provided in Ap-
pendices A, B, and C, respectively. Section IV is devoted
to the topological characterization of MHMs and MCMs. In
Sec. V, we provide the transport calculation for SOTSC and
the lattice model setup used for our transport calculation is
illustrated in Appendix D. Floquet generation of HOTSC with
a specific form of the driving protocol is briefly discussed in
Sec. VI. Finally, we summarize and conclude our paper in
Sec. VII.

II. MODEL AND MOTIVATION

To begin with, we introduce a Bogoliubov-de Gennes
(BdG) Hamiltonian on a cubic lattice incorporating s-wave
superconductivity induced in 3D TI [82,83] via the proximity

effect

H0(k) =
(

HTI(k) − μ �

�∗ μ − T −1HTI(−k)T

)
, (1)

with TI model HTI(k) = 2λ
∑

j=x,y,z sin k jμxσxs j + [(m0 −
6t ) + 2t

∑
j=x,y,z cos k j]μxσz where t (λ) represents the

nearest-neighbor hopping (SOC) strength, � = �0 is the s-
wave superconducting pairing gap induced via the proximity
effect, m0 is the crystal-field splitting energy, and μ is the
chemical potential. The on-site mass term m0 plays a very
crucial role in the band inversion phenomena while combined
with cos k j terms for the TI model [3,84]. The Pauli matrices
μ, σ, and s act on sublattice (A, B), orbital (α, β ), and spin
(↑,↓) degrees of freedom, respectively.

Note that, HTI(k) supports strong TI phase (Z2 class)
with bulk band inversion taking place at � = (0, 0, 0)
point of the Brillouin zone for 0 < m0/t < 4 [83].
For 4 < m0/t < 8, the band inversion occurs at M =
{(0, π, π ), (π, 0, π ), (π, π, 0)} points and the model sup-
ports weak TI phase. On the other hand, band inversion
takes place at R = (π, π, π ) point in the strong TI phase for
8 < m0/t < 12 while the TI model becomes trivially gapped
for m0/t > 12. All these above TI phases are first order
exhibiting gapless surface states that are protected by the
time-reversal symmetry (TRS) T = isyK where K denotes
the complex-conjugation operator. We restrict ourselves to the
strong topological phase to start, with m0/t = 2 throughout
the paper unless mentioned otherwise.

Very recently, second-order TI (SOTI) phases in 2D are
shown to be elevated to third-order TI (TOTI) phases in
3D [13,59]. In particular, starting from first order TI (FOTI)
phases, the ladder of HOTI, i.e., SOTI and TOTI phases can
be engineered consistently via discrete symmetry breaking
perturbations [59]. Below we elaborate them individually.
When one incorporates the HOT mass term V1μxσy with V1 =√

3�1(cos kx − cos ky), it gaps out the 2D surface modes of
FOTI exhibiting four intersections between xz and yz surfaces
gapless as V1 vanishes along kx = ±ky. The C4 symmetry
breaking Wilson-Dirac mass V1 changes its sign between the
above surfaces leading to the SOTI with gapless 1D hinge
modes along z direction: HSOTI = HTI + V1μxσy [59]. Inter-
estingly, the SOTI mass term V1μxσy breaks TRS T ; however,
chiral hinge modes are preserved by C4T symmetry. The in-
troduction of another Wilson-Dirac mass term V2μz with V2 =
�2(2 cos kz − cos kx − cos ky) would result in a TOTI with
zero-energy corner modes residing only at the eight corners
of the cubic system: HTOTI = HSOTI + V2μz [59]. This is due
to the fact that V2 gaps out the hinge modes while it vanishes
over eight-body diagonals ±kx = ±ky = ±kz. We emphasize
that these zero-energy HOT modes respect unitary chiral and
antiunitary particle hole symmetry [59]. We additionally note
that as long as the lattice termination has to be compatible
with the four fold rotation symmetry, the hinge/corner modes
continue to exist [85].

Inspired by the recent theoretical study on the 3D HOTI
phases as discussed above [59], we here present a new 3D
model that allows us to explore the SOTSC and TOTSC
phases systematically. We note that unlike the FOTI, there is
no first-order TSC phase to start with as the BdG Hamiltonian
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[Eq. (1)] becomes trivially gapped out by the superconducting
pairing gap �0. We assume a constant superconducting gap
over the entire sample without taking into account the micro-
scopic description of this proximity induced gap [86]. Inspired
by the fact that in 2D, a trivial s-wave superconductor is pro-
posed to host MCMs in the presence of a magnetic field [37],
we also consider the TRS breaking magnetic field hxsx with
HTI in 3D. At the outset, we propose a generic Hamiltonian,
combing H0(k) [Eq. (1)] with the relevant perturbations V1, V2,
and hx that can host the HOTSC phases, as follows [13,59]:

H (k) = 2λ

3∑
j=1

sin k j	 j +
[

(m0 − 6t ) + 2t
3∑

j=1

cos k j

]
	4

+�0	5 + V1	6 + V2	7 + hx	8 = N(k) · �, (2)

with the convention k1,2,3 = kx,y,z, N(k) =
( N1(k), · · · , N8(k)) and � = (	1, · · · , 	8). Here 	’s
are 16 × 16 matrices: 	1 = μxσxsxτz, 	2 = μxσxsyτz,
	3 = μxσxszτz, 	4 = μxσzτz, 	5 = τx, 	6 = μxσy,
	7 = μzτz, and 	8 = sx. Here, τ acts on the particle-hole
subspace. This Hamiltonian [Eq. (2)] breaks TRS but
preserves the particle-hole symmetry (PHS) C = syτyK.
We now analyze individual situation by considering V1

perturbation only (i.e., V2 = 0) and then V1, V2 perturbations
together. These scenarios allow us to investigate the cascade
of HOTSC phases in 3D. The corresponding real space
tight-binding verion of our HOTSC model [Eq. (2)] is
demonstrated in Eq. (D1) with the on-site superconducting
pairing gap �0 term. For sake of simplicity, we consider
μ = 0 throughout our analysis. However, the chemical
potential can also be finite (inside the bulk gap) in order to
realize HOT modes. This allows us to probe the influence of
discrete symmetry breaking mass perturbation instead of the
chemical potential driven transitions.

We further emphasize that the above TSC model [Eq. (2)]
is not directly connected to any material platform, rather can
be thought of as a theoretical framework to generate the hi-
erarchy of higher-order Majorana modes in 3D. Interestingly,
the underlying HOTI model can be formulated in several ways
by considering different representations of 8 × 8 Hermitian
matrices [59]. As a result, there exist a lot of freedom to
choose other BdG compatible representations of 16 × 16 	

matrices in order to formulate TSC model that hosts MCMs.
With the construction of the HOTSC model in general, we
believe that our model could turn out to be useful in explaining
future HOTSC findings from real materials perspective with
broken TRS. Note that, TI/TSC model can become block-
diagonal in certain representation for some choice of degrees
of freedom such as, orbital, spin, sublattice, etc.; the antiu-
nitary symmetry plays a crucial role in confining boundary
modes at zero energy [39].

III. EMERGENCE OF SECOND- AND THIRD-ORDER
TOPOLOGICAL SUPERCONDUCTOR

To explore the appearance of 1D MHMs propagating along
z direction at the intersection of xz and yz surfaces, we first
consider V1 �= 0 and V2 = 0. We numerically diagonalize the
Hamiltonian [Eq. (2)], considering open boundary condition
(OBC) in all three directions, to show the zero-energy states

FIG. 2. (a) Eigenvalue spectrum Em of the Hamiltonian [Eq. (2)]
for the SOTSC with �1 = 1.0 and �2 = 0.0, under OBC along all
three directions, is shown as a function of state index m. The eigen-
value spectra close to Em = 0 is shown in the inset I1. Due to finite
size effect, there exists a finite gap between the zero-energy modes.
Although this gap G diminishes exponentially with increasing the
system size [G ∼ a1 exp(−b1L), where a1 = 1.0634, b1 = 0.1119;
with L being the system-size in one direction] as shown in the inset
I2. In the inset I3, we depict the eigenvalue spectrum for the same
Hamiltonian, but considering a rod geometry featuring the dispersive
nature of the MHMs. (b) The LDOS associated with the MZMs
appearing at Em = 0 for SOTSC clearly establishes the existence
of MHMs along z direction at the interfaces of xz and yz surfaces
of the cube. (c) We repeat (a) with �1 = 1.0 and �2 = 1.0 for
TOTSC. The zoom-in spectra near Em = 0 is shown in the inset
I1. Here, the finite-size gap G ∼ a2 exp(−b2L) with a2 = 2.7413
and b2 = 0.3908 is depicted in the inset I2. The inset I3 indicates
that the eigenvalue spectrum in the rod geometry is gapped due to
the inclusion of �2 �= 0. (d) The corresponding LDOS structure for
MZMs demonstrates very strong corner localization namely, MCMs
in TOTSC. The value of the other parameters are chosen to be
m = 2.0, t = λ = 1.0, � = 0.4, and hx = 0.0.

and corresponding local density of states (LDOS) in Figs. 2(a)
and 2(b), respectively. We next consider V1 �= 0 and V2 �= 0
in Hamiltonian [Eq. (2)] to investigate the MCMs in TOTSC
phase with the notion that V2 vanishes along body diagonals.
Our numerical findings clearly depict that the MHMs become
gapped out, leaving only zero-energy midgap TOTSC states as
shown in eigenvalue spectra in Fig. 2(c) while the associated
LDOS demonstrates sharp corner localization in Fig. 2(d).
The above results are presented for hx = 0. However, we note
that these observations remain qualitatively unaltered for finite
value of hx (see the text below for more details from an ana-
lytical viewpoint). The zoom-in spectra near Em = 0 and the
finite size gap analysis are respectively depicted in insets I1
and I2 of Fig. 2(a) [Fig. 2(c)] for MHMs (MCMs). We stress
that chiral MHMs are dispersive along z direction as clearly
observed when the SOTSC Hamiltonian is studied employing
a rod geometry with kz as one of the good quantum number
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[see inset I3 of Fig. 2(a)]. On the other hand, zero-energy
MCMs cannot be captured from k-space dispersion as they
always appear to be gapped [see inset I3 of Fig. 2(c)] and
localized at the corners. One can find 16 zero-energy states
Em � 0 in the second and third order phases i.e., there exist
four (two) gapless MHMs (zero-energy MCMs) per hinge
(coner). These MZMs are not Kramer’s pairs as TRS sym-
metry is explicitly broken in the higher-order phases by the
Wilson-Dirac mass terms. It is imperative to mention here that
all the parameters/quantities having the dimension of energy
are scaled by the hopping strength t . The lattice spacing is set
to be unity throughout our analysis.

We anchor the above findings with the low-energy effective
Hamiltonian where we rigorously investigate the effect of hx

on the number of MHMs. Note that hx is treated perturbatively
with respect to the bulk gap of the underlying TI while de-
riving the low-energy Hamiltonians. We procure the surface
Hamiltonian HS

i j for i j surface in the projected basis (see
Appendix A), imposing OBC for the remaining k direction
in Hamiltonian [Eq. (2)] as [68]

HS
xy = −2λkxσxsyτz + 2λkyσxsxτz + M�τx − 2M�2σzτz,

HS
yz = 2λkyσxsxτz + 2λkzσxsyτz + M�τx − M�1σxsz

+ hxsz + M�2σzτz,

HS
xz = −2λkxσxsxτz + 2λkzσxsyτz + M�τx + M�1σxsz

+ M�2σzτz, (3)

with M� = �0, M�1 =
√

3m0�1
2t , and M�2 = m0�2

2t . We would
like to stress on the fact that the bulk magnetic field in 3D
has finite projections on the 2D surface as can be seen from
the aforementioned surface Hamiltonians. Now focusing on
xz and yz surface Hamiltonians, we find a set of common
terms that would participate identically to build up an effective
gap in the above two surfaces (see Appendix A for detail
derivations of the surface Hamiltonian). Let us first analyze
the MHMs from surface Hamiltonian [Eq. (3)] considering
�2 = 0 and hx = 0. The term corresponding to Wilson-Dirac
mass M�1 changes its sign between the above two surfaces
resulting in 16 gapless MHMs for M�1 > M� [68] [see
Figs. 2(a) and 2(b)]. This is due to the fact that all 8 gap
factors obtained by considering τx, σx, sz = ±1, change their
sign accordingly. Therefore, unlike SOTI that immediately
arises for any nonzero values of M�1 , the SOTSC phase can
only emerge above a threshold value of MT

�1
such that M�1 >

MT
�1

= M�. After introducing the magnetic field with hx > 0,
16 MHMs continue to exist as long as hx < M�1 − M�. For
M�1 − M� < hx < M�1 + M�, there are 6 gap factors that
reverse their sign between the above two surfaces leading to
12 MHMs. On the other hand, for hx > M�1 + M�, one can
find 8 MHMs in accordance with 4 sign-changing gap factors
between the above surfaces. Note that, one can surprisingly
obtain 4 MHMs with only 2 sign-changing gap factors for
hx < 0 (direction of the magnetic field is reversed) and M�1 <

M� such that M� − M�1 < |hx| < (M�1 + M�). This refers
to the fact that the magnetic field can in principle alter MT

�1
as

compared to the no magnetic field case. The above discussion
is useful to understand the topological characterization of
various SOTSC phases as depicted in Fig. 3.

We now analytically explore the hinge Hamiltonian HH
i,i j

for ith hinge, obtained by imposing OBC in jth direction on
the surface Hamiltonian [Eq. (3)], to investigate the MCMs
in TOTSC phase (see Appendix B for details). The hinge
Hamiltonian in the projected basis are as follows:

HH
x,xy = 2λkxτy − 2M�2 sxτx, HH

y,yz = −2λkyszτz + M�2τx,

HH
z,xz = −2λkzszτz + M�2τx. (4)

Note that such a set of hinge Hamiltonian predicts the number
of MCMs at any given corner with M�2 �= 0 causing the
MHMs to be gapped out. The relative signs of gap factors,
obtained by considering sx, τx = ±1, between any two hinge
Hamiltonians change only for sx = +1 block referring to
the fact that each corner can host two MZMs in principle.
Therefore, there exist 16 MCMs in the TOTSC altogether.
Interestingly, the magnetic field does not appear in the hinge
Hamiltonian and gap factors are insensitive to hx irrespective
of its strength. However, the perturbation scheme breaks down
if the strength of the magnetic field is arbitrarily large exceed-
ing the bulk gap of the TI. The bulk magnetic field in 3D does
not have any projections on 1D hinge unlike the finite surface
projection as given in Eq. (3). One can consider adhoc surface
magnetic field instead of incorporating it in bulk [Eq. (2)] such
that the gap factors in the hinge Hamiltonian can be tuned with
hx [87].

To complete our study further, we investigate the wave
functions of MCMs for the simple case hx = 0 (see Ap-
pendix C for details). After few lines of algebra while
writing the surface Hamiltonian in terms of hinge Hamil-
tonian HS

yz = H0 + HH
z,yz with �2 = 0, the wave function

of a given hinge from H0 can be found as �MHM ∼∑4
n=1 Nne−αxe−βnyeikzzφn. Here, α = λ/t , β1 = β2 = (M�1 −

M�)/2λ, β3 = β4 = (M�1 + M�)/2λ, and φn represents the
spinor part. The wave function at a given corner, obtained
from the hinge Hamiltonian HH

z,yz with OBC along z hinge and

�2 �= 0, can be found as �MCM ∼ ∑2
n=1 N ′

ne−αxe−β1ye−γnzφ′
n

with γ1 = M�2/2λ and γ2 = M�2/λ. The localization length
of MCMs and MHMs varies in different directions and can in
principle depend on hx, if it is applied on the surface. Our
analytical findings thus confirm the numerical observations
for MHMs and MCMs as depicted in Figs. 2(b) and 2(d),
respectively.

IV. TOPOLOGICAL CHARACTERIZATION

Having established the HOTSC phases analytically, we
now characterize them by investigating their respective Wan-
nier spectra (WS). We employ periodic boundary condition
(PBC) along two directions y and z, and OBC along x direc-
tion, to compute WS for the SOTSC phase. We construct the
Wilson loop operator [14,67,68] as follows:

W (x)
y = F (x)

y,ky+(Ni−1)�ky,kz
· · · F (x)

y,ky+�ky,kz
F (x)

y,ky,kz
, (5)

with [F (x)
y,ky,kz

]mn = 〈φ(x)
n,ky+�ky,kz

|φ(x)
m,ky,kz

〉, where �ki = 2π/Ni

[Ni being the number of discrete points considered inside the
Brillouin zone (BZ) along ki] and |φ(x)

m,ky,kz
〉 is the mth occu-

pied state of the Hamiltonian [Eq. (2)]. The corresponding
Wannier Hamiltonian is given as HW (x)

y
= −i lnW (x)

y whose
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FIG. 3. (a) The WS ν
(x)
y,kz=0, computed using Eq. (5), is illustrated

for SOTSC with �1 = 0.8 and �2 = 0.0, as a function of the state-
index with OBC along x direction and PBC along y and z directions.
One can observe eight eigenvalues that appear at 0.5 corresponding
to 16 MHMs for m = 2.0 and hx = 0.0. In inset [i], [ii], and [iii]
we show six, four, and two eigenvalues at 0.5 in WS for 12, 8, and
4 MHMs, respectively when (�1, hx ) = (0.8, 1.2), (0.8, 2.0), and
(0.1, −0.5), respectively. (b) The WS ν

(x)
y,kz=0 is shown as a function

of �1 where the second order topological phase transition takes place
for M�1 > MT

�1
= M�. (c) The WS ν (x,y)

z for TOTSC is depicted as a
function of the state-index considering OBC along x and y directions
and PBC along z direction. We choose �1 = 1.0, �2 = 1.0, m = 2.0,
and hx = 0.0. Here, the eight eigenvalues at 0.5 correspond to the 16
MCMs. (d) Differential conductance dI

dV (in the unit of e2

h̄ ) is shown
as a function of the incident electron energy E for SOTSC (trivial SC)
phase when m = 2.0 (m = 20.0), �1 = 1.0, �2 = 0.0, and hx = 0.0.
Inset represents the case where we have two MHMs per hinge.
We choose the parameters for this case as (�1, hx ) = (0.8, 2.0) and
�2 = 0.0.

eigenvalues 2πν
(x)
y,kz

correspond to the WS. We focus on kz = 0

point and show ν
(x)
y,kz=0 as a function of the state index m in

Fig. 3(a) when hx = 0. There exist eight eigenvalues at 0.5
corresponding to an average of four MZMs to be present per
hinge in the SOTSC phase. This corroborates with the 8 sign
changing gap factors in the low-energy surface Hamiltonian
[Eq. (3)]. By contrast, the WS of the trivial phase does not ex-
hibit the eigenvalues at 0.5. The topological phase transition at
MT

�1
= M� can thus be appropriately signalled by the feature

of WS as depicted in Fig. 3(b). By tuning the magnetic field
hx, we obtain six, four, two eigenvalues at 0.5 corresponding
to 6, 4, and 2 sign-changing gap factors respectively as shown
in the insets of Fig. 3(a) (see [i], [ii], and [iii], respectively).

Turning to the identification of the TOTSC phase with
M�2 �= 0, we compute WS ν

(x,y)
z , considering PBC along z

direction and OBC along x and y directions, as illustrated in
Fig. 3(c). In the topological phase, we obtain eight eigenvalues
at 0.5 corresponding to an average of two MZMs to be present
per corner. Application of infinitesimal bulk magnetic field hx

does not alter the number of MCMs in this case as hx does not
have any projections on 1D hinge.

V. TRANSPORT SIGNATURE OF SOTSC PHASE

The intriguing transport properties of helical Majorana
edge modes are studied earlier [88,89]. Here, we investi-
gate the transport signature of propagating MHMs in SOTSC
phase. In this purpose, we consider a two-terminal SOTI-
SOTSC-SOTI setup (see Fig. 4 for schematics of the transport
setup and Appendix D for the corresponding real space Hamil-
tonian). The incident current is injected from the left SOTI
lead, propagates through the SOTSC, and output current I is
collected at the right SOTI lead while a potential difference

e(VL − VR) ≡ eV is applied between the left (right) lead
with voltage VL (VR). We choose this setup as the SOTI hosts
8 gapless chiral electronic modes propagating along z hinge
while SOTSC (with hx = 0) harbors 16 MHMs. Owing to the
chiral nature of the MHMs, all the electronic modes from the
left SOTI get transmitted to the right SOTI. The matching
between the number of electronic modes (i.e., 2 electronic
hinge modes in SOTI) and its corresponding Majorana modes
(i.e., 4 MHMs in SOTSC) per hinge results in a complete
transmission of the injected electronic modes while crossed
Andreev reflection, normal electron reflection, and Andreev
reflection remain vanishingly small for this particular setup.
The output current I for this setup is given by the Landauer-
Büttiker formula [90]

I = e2

h
T12(VL − VR), (6)

where T12 is the total normal electron transmission probability
from the left lead to the right lead. From Eq. (6) one obtain
dI
dV = e2

h T12 in the linear response regime. To obtain the sig-
nature of the MHMs, we calculate the differential conductance
dI
dV using KWANT [91] and depicted in Fig. 3(d).

Furthermore, the midgap MHMs exhibit quantized trans-
port signature as long as the incident electron energy E lies
inside the bulk gap in the SOTSC phase. As on average, four
gapless modes contribute per hinge, the dI

dV exhibits quantized

signal of 4e2

h at E = 0. Note that the contribution in dI
dV arising

from electron transmission vanishes when the central super-
conducting region becomes topologically trivial and does not
support any gapless MHMs. Interestingly, by tuning hx in
the SOTSC region (central region in Fig. 4), there exists less
number of MHMs in the SOTSC leading to a mismatch be-
tween the number of modes (i.e., electronic modes and their
corresponding Majorana modes) in the SOTI leads and the
central SOTSC segment. Therefore, for completeness, in the
inset of Fig. 3(d), we present the dI

dV for the case when two
gapless MHMs (hx �= 0) per hinge in SOTSC phase participate
in transport. This refers to a mismatch with respect to the
number of corresponding electronic hinge mode present in the
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FIG. 4. Schematic diagram of our transport setup that has been
used to calculate the differential conductance for the MHMs. Hinge
modes in the SOTI leads and in the middle SOTSC region are rep-
resented by purple and red lines respectively. When the number of
modes in the lead matches with the number of modes in the central
region, one obtains complete transmission of electrons via the hinge
modes.

SOTI as discussed above. Note that dI
dV drops down to half

of the earlier case, i.e., 2e2

h at E = 0. Turing to TOTSC, one
can also attach a SOTI lead to one side of the TOTSC system
to identify the transport signature of MCMs via an expected
zero-bias peak in dI

dV .

VI. FLOQUET GENERATION OF HIGHER-ORDER
TOPOLOGICAL SUPERCONDUCTOR

Having investigated the hierarchy of static HOTSC phases,
we intend to discuss the Floquet generation of HOTSC phases
starting from a 3D TI with proximitized s-wave superconduc-
tivity in it. We incorporate the following periodic kick driving
protocol as [51,59,67,68]

V (t ) = M̃(k) · �̃

∞∑
r=1

δ(t̃ − rT ), (7)

with the convention M̃(k) = (V1,V2) and �̃ = (	6, 	7) where
T denotes the period of the drive and t̃ represents time. Similar
to the static case, V1 �= 0, and V2 = 0 (V1 �= 0, and V2 �= 0)
engender FSOTSC (FTOTSC). Using the static Hamiltonian
[Eq. (2)] with V1 = V2 = hx = 0, the Floquet operator reads as
U (T ) = exp ( − iH (k)T ) exp(−iV ). Thus, one can obtain the
effective Floquet Hamiltonian, which is valid at any frequency
and can be written as

HEff = ξk

sin ξkT

[
sin(|N(k)|T ) cos(|M(k)|)

5∑
j=1

n j	 j + cos(|N(k)|T ) sin(|M(k)|)
∑
j=1,2

mj	 j+5

+ sin(|N(k)|T ) sin(|M(k)|)
5∑

j=1

(n jm1	 j6 + n jm2	 j7)

]
, (8)

with ξk = 1
T cos−1[cos(|N(k)|T ) cos(|M(k)|)], n j = Nj (k)

|N(k)| ,

mj = Mj (k)
|M(k)| , |N (k)| =

√∑5
j=1 N2

j (k) and |M (k)| =
√∑2

j=1 M2
j (k).

We numerically solve the Floquet operator U (T ) |φm〉 =
exp(−iεmT ) |φm〉 to obtain quasienergy states |φm〉 corre-
sponding to the quasienergy εm. We demonstrate the LDOS,
associated with the zero (within numerical accuracy εm � 0)
quasienergy states, in Figs. 5(a) and 5(b) for 1D Floquet
MHMs and 0D Floquet MCMs respectively with appropri-
ate driving parameters. It is worth mentioning that these
Floquet MHMs and MCMs are protected by the PHS C.
For the topological characterization of these FSOTSC and

FIG. 5. (a) The structure of LDOS for the quasienergy states
corresponding to εm = 0, under OBC in all directions, is depicted
while considering the driving protocol [Eq. (7)] with �1 = 0.4 and
�2 = 0.0. The clear signature of MHMs in FSOTSC, propagating
along z direction, can be observed at the interfaces of xz and yz
surface. (b) We repeat (a) for �1 = 0.4 and �2 = 0.4 where MCMs
are clearly visible referring to a FTOTSC phase. We choose the other
parameter values as m = 2.0, t = λ = 1.0, � = 0.4, and T = 0.628.

FTOTSC phases, one can make resort to Floquet WS that
exhibits midgap eigenvalues at 0.5, similar to the static
case [67,68]. For the sake of simplicity, we restrict ourselves
to the case with no magnetic field, i.e., hx = 0 [87]. Note
that the FHOTSC phases, obtained here in the high-frequency
regime adopting dynamical protocol [Eq. (7)], do not con-
ceive anomalous modes with quasienergy εm = π/T [67,68].
Therefore, the generation of anomalous HOTSC modes (dy-
namical MHMs or MCMs at quasienergy π

T ), via appropriate
Floquet driving [56,92] is still an open question and will be
presented elsewhere.

VII. DISCUSSIONS AND SUMMARY

To summarize, in this paper we propose a fermionic model
based on 3D TI with proximity induced s-wave supercon-
ductivity to realize both SOTSC and TOTSC hosting 1D
MHMs and 0D MCMs respectively, under the application of
appropriate Wilson-Dirac mass perturbations. The low-energy
effective model allows us to verify the above numerical ob-
servations analytically. Interestingly, application of a finite
magnetic field in the bulk permits one to manipulate the num-
ber of MHMs leaving the MCMs unaltered. We characterize
these topological phases by distinct distribution of WS. We
also illustrate the quantized transport signature of MHMs in
a two-terminal setup. Finally, we demonstrate a prescription
to generate the FSOTSC and FTOTSC phases by periodically
kicking the static Wilson-Dirac mass perturbations.

As far as experimental feasibility of our model is con-
cerned, superconductivity can be induced in 3D TI surface
states (Bi2Se3, HgTe etc.) via the proximity effect [93–95]
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with an induced gap �0 ∼ 0.5 meV [95]. The Wilson-Dirac
mass perturbations may in principle be realized in optical
lattice platform [96,97]. In recent times, the hierarchy of
HOT phases in 3D has been experimentally discovered in
sonic crystals [81]. Very recently, evidence of a HOTI in
3D has been reported in van der Waals stacking of Bi4Br4

chains [75] via angle-resolved photoemission spectroscopy
measurements. Given the experimental progress in this re-
search field, we believe that our theoretical model proposal
for MHMs and MCMs is timely and may be possible to re-
alize in future experiments. However, the exact description of
experimental techniques and prediction of candidate material
are not the subjects of our present paper.
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APPENDIX A: LOW-ENERGY SURFACE THEORY

We begin by writing down the Hamiltonian [Eq. (2) in the
main text] around 	 = (0, 0, 0) point as

H	 = 2λ

3∑
j=1

k j	 j +
(

m0 − t
3∑

j=1

k2
j

)
	4 + �0	5

−
√

3�1

2

(
k2

x − k2
y

)
	6 − �2

2

(
2k2

z − k2
x − k2

y

)
	7

+ hx	8, (A1)

with the convention k1,2,3 = kx,y,z and 	1 = μxσxsxτz, 	2 =
μxσxsyτz, 	3 = μxσxszτz, 	4 = μxσzτz, 	5 = τx, 	6 = μxσy,
	7 = μzτz, and 	8 = sx. Here, the Pauli matrices μ, σ, s,
and τ act on sublattice (A, B), orbital (α, β ), spin (↑,↓), and
particle-hole (e-h) degrees of freedom, respectively.

1. xy surface

To derive the surface Hamiltonian for xy surface, we con-
sider open boundary condition (OBC) in the z direction and
periodic boundary condition (PBC) along x and y directions.
The low-energy Hamiltonian [Eq. (A1)], can thus be written in
two parts by replacing kz → −i∂z and keeping up to first-order
terms for kx and ky, as [67,68]

HI = (
m0 + t ∂2

z

)
	4 − 2iλ∂z	3,

HII = 2λkx	1 + 2λky	2 + �	5 + �2∂
2
z 	7 + hx	8. (A2)

Now one can solve for HI|�〉 = 0 considering the boundary
condition |�〉 → 0 as z → 0,∞. Thus, we obtain

|�〉 = Ae−K1z sin K2z eikxx+ikyy |χ〉 , (A3)

where K1 = λ
t , K2 =

√
m
t − λ2

t2 , |A|2 = 4K1(K2
1 +K2

2 )
K2

2
and |χ〉 is

a 16-component spinor satisfying σysz |χ〉 = + |χ〉. The latter

can be chosen as follows:

|χ1〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

|χ2〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

|χ3〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 ,

|χ4〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 ,

|χ5〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = +1〉 ,

|χ6〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sz = +1〉 ⊗ |τz = −1〉 ,

|χ7〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = +1〉 ,

|χ8〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sz = −1〉 ⊗ |τz = −1〉 .

(A4)

The matrix element of HII in this basis reads

HS
xy,αβ =

∫ ∞

0
dz 〈�α| HII |�β〉 , (A5)

with α, β = 1, · · · , 8. Thus, the corresponding Hamiltonian
for the xy surface is given by

HS
xy = −2λkxσxsyτz + 2λkyσxsxτz + M�τx − 2M�2σzτz.

(A6)

2. yz surface

To obtain the surface Hamiltonian for yz surface, we invoke
OBC along x direction, while other two directions continue to
obey PBC. We can proceed as before and find the correspond-
ing zero-energy state |�〉 as

|�〉 = Ae−K1x sin K2x eikyy+ikzz |ξ 〉 , (A7)

where |ξ 〉 is a 16-component spinor satisfying σysx |ξ 〉 =
+ |ξ 〉 and our chosen basis reads

|ξ1〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sx = +1〉 ⊗ |τz = +1〉 ,

|ξ2〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sx = +1〉 ⊗ |τz = −1〉 ,

|ξ3〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sx = −1〉 ⊗ |τz = +1〉 ,

|ξ4〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sx = −1〉 ⊗ |τz = −1〉 ,

|ξ5〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sx = +1〉 ⊗ |τz = +1〉 ,

|ξ6〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sx = +1〉 ⊗ |τz = −1〉 ,

|ξ7〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sx = −1〉 ⊗ |τz = +1〉 ,

|ξ8〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sx = −1〉 ⊗ |τz = −1〉 .

(A8)

In this basis, we obtain the surface Hamiltonian for the yz
surface as

HS
yz = 2λkyσxsxτz + 2λkzσxsyτz + M�τx − M�1σxsz

+hxsz + M�2σzτz. (A9)

3. xz surface

Similarly for the xz surface, we employ OBC along y
direction, while other two directions continue to obey PBC.
The zero-energy state |�〉 in this scenario can be written as

|�〉 = Ae−K1y sin K2y eikxx+ikzz |ζ 〉 , (A10)
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FIG. 6. Schematic diagram of various hinge Hamiltonians, ob-
tained from different surfaces, is illustrated along x, y, and z
direction.

where |ζ 〉 is a 16-component spinor satisfying σysy |ζ 〉 =
+ |ζ 〉 and our chosen basis reads

|ζ1〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sy = +1〉 ⊗ |τz = +1〉 ,

|ζ2〉 = |μz = +1〉 ⊗ |σy = +1〉 ⊗ |sy = +1〉 ⊗ |τz = −1〉 ,

|ζ3〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sy = −1〉 ⊗ |τz = +1〉 ,

|ζ4〉 = |μz = +1〉 ⊗ |σy = −1〉 ⊗ |sy = −1〉 ⊗ |τz = −1〉 ,

|ζ5〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sy = +1〉 ⊗ |τz = +1〉 ,

|ζ6〉 = |μz = −1〉 ⊗ |σy = +1〉 ⊗ |sy = +1〉 ⊗ |τz = −1〉 ,

|ζ7〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sy = −1〉 ⊗ |τz = +1〉 ,

|ζ8〉 = |μz = −1〉 ⊗ |σy = −1〉 ⊗ |sy = −1〉 ⊗ |τz = −1〉 .

(A11)

We obtain the surface Hamiltonian for the xz surface, in this
basis, as

HS
xz = −2λkxσxsxτz + 2λkzσxsyτz + M�τx + M�1σxsz

+M�2σzτz. (A12)

APPENDIX B: LOW-ENERGY HINGE THEORY

In this section, we provide the Hamiltonian for different
hinges propagating along x, y, and z directions. We obtain a
total of six hinge Hamiltonian from xy, yz, and xz surface,
depicted schematically in Fig. 6.

1. Hinge from xy surface

a. Hinge along x direction

To obtain the hinge Hamiltonian along x direction from the
xy surface, we divide the surface Hamiltonian for xy surface
Eq. (A6)] into two parts. Then considering OBC along y
direction and PBC along x direction one can write

HS
I = −2iλ∂yσxsxτz + M�τx,

HS
II = −λkxσxsyτz − 2M�2σzτz. (B1)

We solve for HS
I |�S〉 = 0, considering the boundary condi-

tion |�S〉 → 0 as y → 0. We obtain

|�S
α〉 ∼ e−ξαy+ikxx |χα〉 , (B2)

with ξα = {M�

2λ
, M�

2λ
, M�

2λ
, M�

2λ
} and |χα〉 is given as

|χα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i −i −i −i
1 −1 1 −1

−i i i −i
1 1 −1 −1

−i −i i i
1 −1 −1 1

−i i −i i
1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

The Hamiltonian for the hinge along x direction can be
obtained by calculating the matrix element of HS

II in |�S
α〉 as

Hx,xy = 2λkxτy − 2M�2 sxτx, (B4)

where hinge is gapped due to the second perturbation �2.

b. Hinge along y direction

To derive the hinge Hamiltonian along y direction, we
consider OBC along x direction and PBC along y direction.
Thus, we obtain the zero-energy solution as

|�S
α〉 ∼ e−ξαx+ikyy |ζα〉 , (B5)

with ξα = {M�

2λ
, M�

2λ
, M�

2λ
, M�

2λ
} and |ζα〉 is given as

|ζα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1
i −i i −i
i −i −i i
1 1 −1 −1

−1 −1 1 1
i −i −i i
i −i i −i
1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

The Hamiltonian for the hinge along y direction is obtained as

Hy,xy = −2λkyτy − 2M�2 sxτx. (B7)

2. Hinge from yz surface

a. Hinge along y direction

For hinge Hamiltonian along y direction we consider OBC
along z and PBC along y direction respectively. The two parts
of the yz surface Hamiltonian [Eq. (A9)] can be written as

HS
I = −2iλ∂yσxsxτz + M�τx − M�1σxsz,

HS
II = 2λkzσxsyτz + M�2σzτz + hxsz. (B8)
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The zero-energy solution is obtained as

|�S
α〉 ∼ e−ξαz+ikyy |χα〉 , (B9)

with ξα = {M�1 +M�

2λ
,

M�1 +M�

2λ
,

M�1 −M�

2λ
,

M�1 −M�

2λ
} and |χα〉 is

given as

|χα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 1 1

−1 1 −1 1
−1 1 1 −1
−1 −1 1 1
−1 1 1 −1
1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

The Hamiltonian for the hinge along y direction is obtained as

Hy,yz = −2λkyszτz + M�2τx. (B11)

b. Hinge along z direction

For hinge Hamiltonian along z direction we consider OBC
along y direction and PBC along z direction, and obtain the
zero-energy solution as

|�S
α〉 ∼ e−ξαy+ikzz |ζα〉 , (B12)

with ξα = {M�1 +M�

2λ
,

M�1 +M�

2λ
,

M�1 −M�

2λ
,

M�1 −M�

2λ
} and |ζα〉 is

given as

|ζα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1

−i −i −i −i
i −i i −i

−1 1 1 −1
−1 −1 1 1

i −i −i i
−i −i i i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B13)

The Hamiltonian for the hinge propagating along z direction
can be obtained as

Hz,yz = 2λkzszτz + M�2τx. (B14)

3. Hinge from xz surface

a. Hinge along x direction

For hinge Hamiltonian along x direction, we consider OBC
along z direction and PBC along x direction. As before, the

two parts of the surface Hamiltonian reads as

HS
I = 2iλ∂xσxsxτz + M�τx + M�1σxsz,

HS
II = 2λkzσxsyτz + M�2σzτz. (B15)

Then the zero-energy solution is obtained as

|�S
α〉 ∼ e−ξαz+ikxx |χα〉 , (B16)

with ξα = {M�1 +M�

2λ
,

M�1 +M�

2λ
,

M�1 −M�

2λ
,

M�1 −M�

2λ
} and |χα〉 is

given as

|χα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1

−1 −1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

−1 1 1 −1
1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B17)

The Hamiltonian for the hinge along y direction can be written
as

Hx,xz = 2λkxszτz + M�2τx. (B18)

b. Hinge along z direction

For hinge Hamiltonian along z direction we employ OBC
along x direction and PBC along z direction. Similar as before,
we obtain the zero-energy solution as

|�S
α〉 ∼ e−ξαx+ikzz |ζα〉 , (B19)

with
ξα = {M�1 +M�

2λ
,

M�1 +M�

2λ
,

M�1 −M�

2λ
,

M�1 −M�

2λ
} and |ζα〉 is

given as

|ζα〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1

−i −i −i −i
i −i i −i
1 −1 −1 1
1 1 −1 −1

−i i i −i
i i −i −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)

The Hamiltonian for the hinge along z direction is obtained
as

Hz,xz = −2λkzszτz + M�2τx. (B21)

APPENDIX C: CORNER MODE SOLUTIONS

Here we provide the solution for the MCMs located at x = y = z = 0. To obtain the same we solve the hinge Hamiltonians
derived before. Then we find the appropriate solutions (respecting the boundary condition) therein and match them at x = y =
z = 0. Thus, we find the solution for the MCMs as

� ∼ cx
1 φ1 e− M�2

x

λ + cx
2 φ2 e− M�2

x

2λ : along x ∼ cy
1 φ1 e− M�2

y

2λ + cy
2 φ2 e− M�2

y

λ : along y ∼ cz
1 φ1 e− M�2

z

2λ + cz
2 φ2 e− M�2

z

2λ : along z,
(C1)

Here, cx,y,z
1,2 are arbitrary constants, φ1 = {1, i,−1, i}T and φ2 = {1,−i, 1, i}T are the spinors.

APPENDIX D: SOTI-SOTSC-SOTI JUNCTION

In this section we discuss the schematic (see Fig. 4) and outline of our transport setup that we employ to compute the
differential conductance, dI

dV in order to obtain the transport signature of MHMs. As mentioned earlier and also evident
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from Fig. 4 is that the leads we use are SOTI. Here we provide the details of our lattice model used in KWANT [91] to
calculate dI

dV .

H =
∑

x,y,z,α,β

[
C†

α,x,y,z{(m0 − 6t )	αβ

4 + �	
αβ

5 + hx	
αβ

8 }Cβ,x,y,z + C†
α,x,y,z

{
iλ	

αβ

1 + t	αβ

4 +
√

3�1

2
	

αβ

6 − �2

2
	

αβ

7

}
Cβ,x+1,y,z

+ C†
α,x,y,z

{
iλ	

αβ

2 + t	αβ

4 −
√

3�1

2
	

αβ

6 − �2

2
	

αβ

7

}
Cβ,x,y+1,z + C†

α,x,y,z{iλ	
αβ

3 + t	αβ

4 + �2	
αβ

7 }Cβ,x,y,z+1 + H.c.

]
, (D1)

Here, α, β index encapsulate all four, i.e., sublattice (A, B), orbital (δ, γ ), spin (↑,↓), and particle-hole (e-h) degrees of freedom.
� is the superconducting order parameter, which is taken to be zero for the SOTI leads, i.e., left and right regions whereas
� = �0 for the central SOTSC region (see Fig. 4). The momentum space version of Eq. (D1) is given by Eq. (2). As the dI/dV
depends on the scattering probabilities (via Landauer-Büttiker formula) through our transport setup, the low-energy effective
model will yield the similar results as shown via our tight-binding lattice model [see Fig. 3(d)].
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