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Self-propulsion with speed and orientation fluctuation: Exact computation of moments and
dynamical bistabilities in displacement
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We consider the influence of active speed fluctuations on the dynamics of a d-dimensional active Brownian
particle performing a persistent stochastic motion. The speed fluctuation brings about a dynamical anisotropy
even in the absence of shape anisotropy. We use the Laplace transform of the Fokker-Planck equation to obtain
exact expressions for time-dependent dynamical moments. Our results agree with direct numerical simulations
and show several dynamical crossovers determined by the activity, persistence, and speed fluctuation. The
dynamical anisotropy leads to a subdiffusive scaling in the parallel component of displacement fluctuation at
intermediate times. The kurtosis remains positive at short times determined by the speed fluctuation, crossing
over to a negative minimum at intermediate times governed by the persistence before vanishing asymptotically.
The probability distribution of particle displacement obtained from numerical simulations in two dimensions
shows two crossovers between compact and extended trajectories via two bimodal distributions at intervening
times. While the speed fluctuation dominates the first crossover, the second crossover is controlled by persistence
like in the wormlike chain model of semiflexible polymers.
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I. INTRODUCTION

Active particles self-propel, consuming and dissipating
internal or ambient energy [1,2]. They are driven out of
equilibrium at the level of individual elements, breaking the
detailed balance condition and the equilibrium fluctuation-
dissipation relation. Natural examples of active matter span
various length scales, including motor proteins, motile cells,
bacteria, developing tissues, bird flocks, fish schools, and
animal herds [3–8]. Inspired by such biological examples,
several artificial active elements were fabricated, e.g., vibrated
rods, colloidal swimmers, and asymmetric disks [8,9]. Ac-
tive colloids can use diffusiophoresis, electrophoresis, and the
Marangoni effect to generate self-propulsion [9].

Due to their nonequilibrium nature, active particles show
many remarkable properties strikingly different from their
equilibrium counterparts. Experimental and theoretical stud-
ies gave significant insight into collective motion, flocking,
and motility-induced phase separation [8–10]. Even a single
active particle can show rich and counterintuitive physical
properties. In this context, studies of simple models have been
crucial. They displayed several ballistic-diffusive crossovers,
non-Boltzmann steady-state, localization away from potential
minima, and associated reentrant transition for steady-state
properties of trapped particles [11–30].

Fluctuations are inherent to self-propulsion, with its source
and nature varying from system to system. For example,
ATP hydrolysis in motor proteins or the chemical reaction
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in the diffusiophoresis of platinum-gold nanoparticles im-
mersed in hydrogen peroxide is inherently stochastic. The
inbuilt structural asymmetry in Janus colloids determines their
instantaneous heading direction of motion, which undergoes
orientational fluctuations [9]. They are often modeled as ac-
tive Brownian particles (ABP) performing a continuous-time
persistent random walk, assuming a constant active speed
[14,31–35]. However, the mechanism of active speed genera-
tion itself is stochastic. For example, the speed distribution in
the run and tumble motion of Myxobacteria is broad [36,37]
and, in the pathogenic E. coli, it displays a bimodality with
peaks corresponding to run and stop [38,39]. This necessi-
tates a description of ABP motion in the presence of speed
fluctuations.

In theoretical models, self-propulsion mechanisms can be
incorporated in various ways. The energy-depot model is de-
scribed using a stochastic energy gain and dissipation with
a part of dissipated energy leading to self-propulsion [40].
Similarly, coupling internal chemical processes with physical
movement leads to a Langevin description of self-propulsion
in apolar and polar particles [41,42]. Consideration of a
lattice-based model with an internal chemical process gener-
ating self-propulsion led to a continuum description similar
to the ABP model, apart from the appearance of additional
Gaussian noise in active speed [43–45].

In this paper, we consider the impact of such active speed
fluctuations on the dynamics of ABPs. The speed fluctuations
generate anisotropy to displacement fluctuations [28,29]. We
utilize a Laplace transform approach initially developed to
understand the properties of the wormlike chain (WLC) model
of semiflexible polymers [46] to calculate the exact time de-
pendence of all moments of the ABP in arbitrary dimensions
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from the Fokker-Planck equation. Here we summarize our
main results.

(1) We present exact computations of several moments of
displacement and its components in arbitrary dimensions. At
large speed fluctuations, the parallel and perpendicular com-
ponents of the displacement fluctuation display qualitatively
new behavior compared to ABPs with constant speed [21].
They show subdiffusive and ballistic scalings, respectively, in
the intermediate time regime.

(2) The exact calculation of displacement kurtosis captures
deviations from the Gaussian statistics. Large speed fluctua-
tions keep kurtosis positive over shorter times. At intermediate
times the active orientational diffusion leads to negative values
of kurtosis before it vanishes asymptotically.

(3) We perform direct numerical simulations in two dimen-
sions to calculate the displacement distribution. With time,
it transforms from a distribution with one maximum at the
origin to one characterizing extended trajectories to finally
return to a Gaussian distribution peaked at the origin. We
find two intermediate bimodal distributions among which the
first one at a short time is governed by the speed fluctuations.
Its presence distinguishes the properties of this system from
ABPs with constant speed.

The paper is organized as follows. In Sec. II, we
present the model and describe the Laplace transform of the
Fokker-Planck equation to derive the general expression for
dynamical moments in arbitrary dimensions. In Sec. III, we
obtain the mean displacement, mean-squared displacement,
and displacement fluctuations. We demonstrate the anisotropy
in displacement fluctuations at short times and analyze their
crossovers with time. In Sec. IV, we calculate the fourth
moment of displacement and kurtosis. Using the kurtosis,
we show the deviations of the dynamics from the Gaussian
process. In Sec. V we use direct numerical simulations to
determine the evolution of the probability distribution func-
tion of displacement. Finally, in Sec. VI, we conclude by
presenting a summary and outlook.

II. THEORY

A. Model

The dynamics of this active particle in d dimensions is
described by its position r = (r1, r2, . . . , rd ) and orientation
û = (u1, u2, . . . , ud ), which is a unit vector in d dimensions.
Let the infinitesimal increments at time t be denoted by dri =
ri(t + dt ) − ri(t ) and dui = ui(t + dt ) − ui(t ). Within the Ito
convention [47–49], the equation of motion of the ABP with
Gaussian speed fluctuation is given by [43]

dri = (v0 dt + dBs) ui + dBt
i (t ), (1)

dui = (δi j − uiu j ) dBr
j (t ) − (d − 1)Drui dt, (2)

where the translational noise dBt due to the heat bath follows a
Gaussian distribution with its components obeying 〈dBt

i〉 = 0
and 〈dBt

i dBt
j〉 = 2Dδi jdt . Within a discrete lattice model in

Ref. [43], the active displacement was considered to be associ-
ated with the release of a chemical potential. In the continuum
limit, it led to a speed with deterministic part v0 and speed
fluctuations denoted by an additional Gaussian noise dBs

obeying 〈dBs〉 = 0 and 〈dBsdBs〉 = 2Dv dt . It is easy to see
that dimensionally Dv = δv2τv with a speed fluctuation δv2

and an associated relaxation time τv . Such a relation can be
derived directly considering the mechanism of active speed
generation[43,50–52]. The orientational diffusion of the head-
ing direction is governed by the Gaussian noise dBr with its
components obeying 〈dBr

i 〉 = 0 and 〈dBr
i dBr

j〉 = 2Drδi j dt .
The first term in Eq. (2) denotes a projection operator for
the noise dBr in the (d − 1)-dimensional plane perpendicular
to dû. The second term ensures the normalization of the unit
vector û2 = 1 = (û + dû)2.

It is easy to see from Eq. (1) that the active speed fluctua-
tions lead to anisotropy in displacement fluctuations. The total
stochastic force on displacement can be expressed in terms of
components along the heading direction û and in the plane
perpendicular to it,

dBsui + dBt
i = dB‖ui + dB⊥

j (δi j − uiu j ), (3)

where dB‖ = dBs + u jdBt
j and dB⊥

j = dBt
j . They obey

〈dB‖〉 = 0, 〈dB‖dB‖〉 = 2D‖dt with D‖ = (Dv + D) and
〈dB⊥

i 〉 = 0, 〈dB⊥
i dB⊥

j 〉 = 2D⊥δi jdt with D⊥ = D. This is
equivalent to the choice of anisotropic diffusion with D‖ >

D⊥ [28,29,53]. The anisotropy, in this case, is due to the speed
fluctuation Dv = D‖ − D⊥ and not due to shape anisotropy
unlike in Refs. [28,29]. However, the above mapping shows
that, expressing D and Dv in terms of D‖ and D⊥, our work
gives a direct method to calculate exact expressions for all
the dynamical moments for anisotropic ABP in arbitrary d di-
mensions. In the following, we present explicit derivations of
several such expressions, some of which have been obtained
before for anisotropic ABPs in d = 2, 3 [28,29].

It is straightforward to perform direct numerical sim-
ulations of Eqs. (1) and (2) using the Euler-Maruyama
integration. The units of time and length are set by τr = 1/Dr

and �̄ = √
D/Dr , respectively. This sets the unit of velocity

v̄ = �̄/τr = √
DDr .

B. Fokker-Planck equation and calculation of moments

The probability distribution P(r, û, t ) of the position r and
the active orientation û of the particle follows the Fokker-
Planck equation

∂t P(r, û, t ) = Dv (û · ∇)2P + Dr∇2
u P + D∇2P − v0 û · ∇P,

(4)

where ∇ is the d-dimensional Laplacian operator and ∇u is
the Laplacian in the (d − 1) dimensional orientation space and
can be expressed as ∇2

u = x2 ∑
i ∂

2
xi

− [x2∂2
x + (d − 1)x∂x]

using ui = xi/x with x = |x|. Using the Laplace transform
P̃(r, û, s) = ∫ ∞

0 dt e−st P(r, û, t ) the Fokker-Planck equa-
tion becomes

−P(r, û, 0) + sP̃(r, û, s)

= Dv (û · ∇)2P̃ + Dr∇2
u P̃ + D∇2P̃ − v0 û · ∇P̃.

The mean of the observable ψ in Laplace space 〈ψ〉s =∫
dr dû ψ (r, û)P̃(r, û, s). Multiplying the above equa-

tion by ψ (r, û) and integrating over all possible (r, û)
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we find

−〈ψ〉0 + s〈ψ〉s = Dv〈(û · ∇)2ψ〉s + Dr
〈∇2

uψ
〉
s

+ D〈∇2ψ〉s + v0 〈û · ∇ψ〉s, (5)

where the initial condition sets 〈ψ〉0 =∫
dr dû ψ (r, û)P(r, û, 0). Without any loss of generality,

we consider the initial condition to follow P(r, û, 0) =
δ(r)δ(û − û0). Equation (5) can be utilized to compute all the
moments of any dynamical variable in arbitrary dimensions
as a function of time. In the following, we consider moments
of displacement and displacement fluctuations characterizing
the dynamics.

III. DISPLACEMENT

In Eq. (5) using ψ = û we get 〈û〉s = û0/[s + (d − 1)Dr].
The mean displacement can be calculated using ψ = r in
Eq. (5), along with the expression for 〈û〉s to get 〈r〉s =
v0û0/s[s + (d − 1)Dr]. Performing an inverse Laplace trans-
form this leads to

〈r〉(t ) = v0 û0

(d − 1)Dr
(1 − e−(d−1)Dr t ). (6)

The mean displacement is independent of the speed fluctua-
tion, as dBs and û are independent stochastic processes and
〈dBs〉 = 0. This result, thus, is the same as the displacement
of ABPs in the absence of speed fluctuations [21].

A. Mean-squared displacement

The mean-squared displacement (MSD) can be cal-
culated using ψ = r2 in Eq. (5). With initial position
at origin, 〈r2〉0 = 0. It is easy to see that 〈∇2

u r2〉s = 0,
〈û · ∇r2〉s = 2〈û · r〉s, 〈(û · ∇)2r2〉s = 2〈1〉s, and 〈∇2r2〉s =
2d〈1〉s. Note that 〈1〉s = ∫

dr dû P̃ = ∫
dr dû

∫ ∞
0 dt e−st P =

1/s using the normalization
∫

dr dû P = 1. Thus Eq. (5)
leads to

s〈r2〉s = 2Dv/s + 2dD/s + 2v0〈û · r〉s.

We evaluate 〈û · r〉s using Eq. (5) again. Utilizing ∇2
u û =

−(d − 1)û and 〈û · ∇(û · r)〉s = 〈û2〉s = 1/s, we get

〈û · r〉s = v0/{s[s + (d − 1)Dr]}.
Using this relation in the expression of 〈r2〉s we obtain

〈r2〉s = 2Dv

s2
+ 2dD

s2
+ 2v2

0

s2[s + (d − 1)Dr]
. (7)

The inverse Laplace transform gives the MSD

〈r2〉 = 2d

(
D + v2

0

(d − 1)dDr
+ Dv

d

)
t

− 2v2
0

(d − 1)2D2
r

(1 − e−(d−1)Drt ). (8)

The time dependence of MSD is shown in Fig. 1(a). In the
long time limit of Drt → ∞, it gives a diffusive scaling,
〈r2〉 = 2d Deff t , with the effective diffusion constant

Deff = D + Dv

d
+ v2

0

(d − 1)dDr
. (9)

(a) (b)

FIG. 1. Time dependence of (a) 〈r2〉 in Eq. (8) and (b) 〈δr2〉 in
Eq. (10) in d = 2 for Pe = v0/v̄ = 1 (dashed line) and 100 (solid
line), with D̃v = Dvτr/�̄

2 = 1. The crossover times for Pe = 100
are (a) tI/τr ≈ 6 × 10−4 and tII/τr ≈ 3 and (b) tI/τr = 0.03 and
tII/τr ≈ 4/3.

Clearly Deff consists of thermal diffusion D, the contribution
from speed fluctuations Dv/d , and the active diffusion due to
the persistence of motion v2

0/[(d − 1)dDr]. At Dv = 0, the
expression for 〈r2〉 agrees with the results for ABPs in the
absence of speed fluctuation [21]. Speed fluctuation enhances
diffusivity, thereby rendering a mechanism for better spread-
ing which might be utilized, e.g., by pathogenic bacteria in the
search of host cells [39].

The effective diffusivity can be reexpressed in terms of the
mean translational diffusivity of anisotropic ABP D̄ = [D‖ +
(d − 1)D⊥]/d = (D + Dv/d ) and the active diffusion as

Deff = D̄ + v2
0

(d − 1)dDr
.

This behavior is similar to ABP with constant speed with the
translational diffusion D replaced by the mean diffusivity D̄
[21]. Our expression for MSD in Eq. (8) is valid for arbitrary
d dimensions. Using d = 2, Eq. (8) reduces to the expression
for MSD derived for anisotropic ABP in two dimensions [28].

1. Dynamical crossovers

In the small time limit of t → 0, expanding Eq. (8) around
t = 0 we get

〈r2〉 = 2d

(
D + Dv

d

)
t + v2

0t2 − (d − 1)

3
v2

0Drt
3 + O(t4).

Comparing the consecutive terms in the expansion, we can
determine the crossover points shown in Fig. 1(a). It predicts
the first diffusive 〈r2〉 ∼ t to ballistic 〈r2〉 ∼ t2 crossover at

tI ≈ 2(dD + Dv )/v2
0,

followed by a ballistic to diffusive crossover at

tII ≈ 3/(d − 1)Dr .

In Fig. 1(a), these crossover times are identified for parameter
values D̃v = Dvτr/�̄

2 = 1 and Pe = 100; they are tI/τr ≈ 6 ×
10−4 and tII/τr ≈ 3. Similar crossovers are present at small Pe
(Péclet number) as well, but are less pronounced.
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B. Displacement fluctuation

Using Eq. (6) and Eq. (8) one can directly obtain the
displacement fluctuation 〈δr2〉 = 〈r2〉 − 〈r〉2 to get

〈δr2〉 = 2dDefft − v2
0

(d − 1)2D2
r

(3 − 4 e−(d−1)Drt

+ e−2(d−1)Drt ). (10)

This behavior is similar to ABP with constant speed with
the translational diffusion D replaced by the increased mean
diffusivity D̄, in the expression of Deff [21]. The time de-
pendence of 〈δr2〉 is plotted in Fig. 1(b) at two different Pe
values. The plot at large Pe clearly shows a crossover from
〈δr2〉 ∼ t to 〈δr2〉 ∼ t3 at small t , followed by a crossover
back to diffusive ∼t scaling at large t . This can be understood
using the expansion

〈δr2〉 = 2(dD + Dv )t + 2
3 (d − 1)v2

0Drt
3

− 1
2 (d − 1)2v2

0D2
r t4 + O(t5).

It predicts a crossover from diffusive 〈δr2〉 ∼ t scaling to
〈δr2〉 ∼ t3 scaling at

tI ≈ [3(dD + Dv )/(d − 1)v2
0Dr]1/2,

followed by another possible crossover back to the diffusive
scaling near

tII ≈ 4/3(d − 1)Dr .

In Fig. 1(b), the solid line shows the crossovers at D̃v = 1
and Pe = 100. The figure also shows the estimated crossover
times tI/τr = 0.03 and tII/τr = 4/3.

C. Components of displacement fluctuation

Using the method described above it is straightforward to
show that (Appendix A)

〈δr2
‖ 〉 = 2

(
D + Dv

d
+ v2

0

(d − 1)dDr

)
t + (d − 1)Dv

d2Dr
(1 − e−2dDrt ) + v2

0

D2
r

(
(d − 1)e−2dDrt

d2(d + 1)
+ 8 e−(d−1)Drt

(d − 1)2(d + 1)

− e−2(d−1)Drt

(d − 1)2
− 4d − 1

(d − 1)2d2

)
, (11)

〈δr2
⊥〉 = 2(d − 1)

(
D + Dv

d
+ v2

0

(d − 1)dDr

)
t − (d − 1)Dv

d2Dr
(1 − e−2dDrt )

+ v2
0

D2
r

(
4 e−(d−1)Drt

d2 − 1
− (d − 1)e−2dDrt

d2(d + 1)
− 3d − 1

d2(d − 1)

)
. (12)

In the absence of speed fluctuation Dv = 0, the above result
reduces to that of usual ABPs with constant active speed
[21]. We show comparisons of direct numerical simulations
of the model in d = 2 with the above-mentioned analytic
predictions in Figs. 2 and 3. Remarkably, the parallel compo-
nent shows a nonmonotonic variation in Fig. 2. The detailed
nature of their time dependence is further analyzed in the
following.

1. In two dimensions

The expressions simplify in two dimensions, d = 2. In the
small time limit, expanding the two components around t = 0
we obtain

〈δr2
‖ 〉t→0 = 2(D + Dv )t − 2DvDrt

2 + 8
3 DvD2

r t3

+ (
1
3v2

0 − 8
3 DvDr

)
D2

r t4

− (
7
15v2

0 − 32
15 DvDr

)
D3

r t5 + O(t6), (13)

〈δr2
⊥〉t→0 = 2Dt + 2DvDrt

2 + (
2
3v2

0 − 8
3 DvDr

)
Drt

3

− (
5
6v2

0 − 8
3 DvDr

)
D2

r t4 + O(t5). (14)

The resultant small time limit diffusive scalings are
〈δr2

‖ 〉t→0 ≈ 2(D + Dv )t and 〈δr2
⊥〉t→0 ≈ 2Dt . Moreover, the

above expansions can be used to identify the observed
crossovers. Before analyzing them, we note that the compo-
nents of displacement fluctuation return to diffusive scaling
asymptotically

〈δr2
‖ 〉t→∞ = 1

(d − 1)
〈δr2

⊥〉t→∞ = 2

(
D + Dv

2
+ v2

0

2Dr

)
t .

(15)

The expressions of differences between these two limits

〈δr2
‖ 〉t→∞ − 〈δr2

‖ 〉t→0 =
(

v2
0

Dr
− Dv

)
t,

〈δr2
⊥〉t→∞ − 〈δr2

⊥〉t→0 =
(

v2
0

Dr
+ Dv

)
t (16)

are useful for understanding their time dependence. Clearly,
〈δr2

‖ 〉/t will reduce (increase) with time for v2
0 < DvDr (v2

0 >

DvDr). Remarkably, in the absence of speed fluctuation, Dv =
0, the possibility of reduction in 〈δr2

‖ 〉/t disappears, and such
subdiffusive fluctuations are not seen in ABPs with constant
active speed [21]. As a result, observation of this measure can
be used to distinguish the impact of speed fluctuations in ABP
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(a) (b) (c)

FIG. 2. Components of displacement fluctuation in two dimen-
sions for low activity Pe2 � D̃v with Pe = v0τr/�̄ and D̃v = Dvτr/�̄

2.
Points denote simulation results and lines depict analytical predic-
tions. The components of displacement fluctuations 〈δr2

‖ 〉 (◦, red) and
〈δr2

⊥〉 (, blue) correspond to Eq. (11) and Eq. (12), respectively. The
parameter values used are (a) D̃v = 1 and Pe = 0.1, (b) D̃v = 1 and
Pe = 1, and (c) D̃v = 103 and Pe = 31.62. The crossover times in
(c) are t⊥

I /τr = 10−3 and t⊥
II /τr = 1. The parallel component shows

subdiffusive behavior at intermediate time scales as the condition
Pe2 � D̃v is satisfied.

trajectories obtained from experiments. In contrast, 〈δr2
⊥〉/t

increases from short time diffusive to asymptotic diffusive
behavior, irrespective of the value of active speed.

(a)

(b)

FIG. 3. Components of displacement fluctuation in d = 2 for
high activity Pe2 > D̃v with Pe = v0τr/�̄ and D̃v = Dvτr/�̄

2. The
points denote numerical simulations and the lines denote analytic
expressions. The parallel (◦, red) and perpendicular (, blue) com-
ponents of displacement fluctuation correspond to Eq. (11) and
Eq. (12), respectively. The parameter values used are (a) D̃v = 1
and Pe = 102 and (b) D̃v = 105 and Pe = 1.58 × 104. In (a), the
crossover times are denoted by t‖

I /τr = 0.11, t‖
II/τr = 0.71, t⊥′

I /τr =
1.7 × 10−2, and t⊥

III/τr = 0.8. In (b), the crossover times are denoted
by t‖

I /τr = 0.13, t‖
II/τr = 0.71, t⊥

I /τr = 10−5, t⊥
II /τr = 1.2 × 10−3,

and t⊥
III/τr = 0.8.

2. Strong speed fluctuation: v2
0 � DvDr

In Fig. 2(a), the parallel component shows diffusive–
subdiffusive–diffusive crossovers. In Figs. 2(b) and 2(c),
〈δr2

‖ 〉 shows diffusive–subdiffusive–superballistic–diffusive
crossovers. The crossover points can be estimated by compar-
ing the various t scaling in the right hand side of Eq. (13). The
first subdiffusive crossover appears at tI Dr = (D + Dv )/Dv .
The following superballistic crossover point to 〈δr2

‖ 〉 ∼ t3 is
at tII Dr = 1. The final diffusive crossover appears at tIII =
8Dv/(8DvDr − v2

0 ).
In the perpendicular component, the crossovers 〈δr2

⊥〉 ∼ t
to 〈δr2

⊥〉 ∼ t2 appear at

t⊥
I Dr = D/Dv.

It is followed by a crossover back to 〈δr2
⊥〉 ∼ t at

t⊥
II Dr ≈ [

3DvDr/
(
v2

0 − 4DvDr
)]

if v2
0 < 4DvDr . These crossovers are identified in Fig. 2(c),

where with D̃v = 103 and Pe = 31.62 the condition Pe2 <

4D̃v holds. The crossover times are t⊥
I /τr = 10−3 and

t⊥
II /τr = 1.

The presence of subdiffusive scaling in the parallel com-
ponent of displacement fluctuations in the intermediate time
regime is a characteristic of strong speed fluctuations. It can
be measured from direct video microscopy of candidate active
Brownian particles. Our predictions can be directly tested
against such experiments.

3. Weak speed fluctuation: v2
0 > DvDr

In this limit the final diffusivity in 〈δr2
‖ 〉 is larger than

the short time diffusivity. In Fig. 3, we show the crossovers
〈δr2

‖ 〉 ∼ t to ∼t4 and finally to ∼t . The crossover times in

Fig. 3(a) for D̃v = 1 and Pe = 102 are t‖
I /τr ≈ 0.11 and

t‖
II/τr ≈ 0.71. Similarly, the crossover times in Fig. 3(b) for

D̃v = 105 and Pe = 1.58 × 104 are t‖
I /τr ≈ 0.13 and t‖

II/τr ≈
0.71.

The crossovers 〈δr2
⊥〉 ∼ t to ∼t3 and finally to ∼t are

shown in Fig. 3(a) for D̃v = 1 and Pe = 102. The crossover
times identified in the figure are t⊥′

I /τr = 1.7 × 10−2 and
t⊥
III/τr = 0.8. Another scenario in Fig. 3(b) at D̃v = 105 and

Pe = 1.58 × 104. The identified crossover times are t⊥
I /τr =

1/D̃v = 10−5, t⊥
II /τr ≈ 1.2 × 10−3, and t⊥

III ≡ t⊥
III/τr ≈ 0.8.

The explicit calculations for the expressions of these crossover
times are shown in Appendix C.

IV. FOURTH MOMENT AND KURTOSIS

In this section we obtain the fourth moment of dis-
placement 〈r4〉 and hence the kurtosis [21,28–30,54] to
quantify the deviations from possible Gaussian behavior.
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The fourth moment of displacement is given by (Appendix B)

〈r4(t )〉 = 4[Dv + (d + 2)D](Dv + dD)t2 + 16Dv (Dv + D)

[
t

2dDr
− 1

(2dDr )2

(
1 − e−2dDrt

)]

+ 32Dv (Dv + dD)Dr

[
t2

4dDr
− t

(2dDr )2
+ 1

(2dDr )3

(
1 − e−2dDrt

)]

+ 8Dvv
2
0

[
t2

(d − 1)Dr
+ t

(d − 1)2D2
r

+ 3t e−(d−1)Drt

(d − 1)2D2
r

− 4

(d − 1)3D3
r

(
1 − e−(d−1)Drt

)]

+ 32Dvv
2
0

[
t2

2(d − 1)dDr
+ (d2 − 4d + 1)t

2(d − 1)2d2D2
r

+ −3d3 + 11d2 − 5d + 1

4(d − 1)3d3D3
r

+ (d − 3)e−(d−1)Drt

(d − 1)3(d + 1)D3
r

− (d − 1)e−2dDrt

4d3(d + 1)D3
r

]

− 8
(
d2v4

0 + 10dv4
0 + 25v4

0

)
e−(d−1)Drt

(d − 1)4(d + 1)2D4
r

+ 4
(
d3v4

0 + 23d2v4
0 − 7dv4

0 + v4
0

)
(d − 1)4d3D4

r

+ 8t e−(d−1)Drt
(
d3DDrv

2
0 + 2d2DDrv

2
0 − dDDrv

2
0 + dv4

0 − 2DDrv
2
0 − 7v4

0

)
(d − 1)3(d + 1)D3

r

+ 4t2
(
d5D2D2

r − 3d3D2D2
r + 2d3DDrv

2
0 + 2d2D2D2

r + 2d2DDrv
2
0 − 4dDDrv

2
0 + dv4

0 + 2v4
0

)
(d − 1)2dD2

r

− 8t
(
d4DDrv

2
0 + d3DDrv

2
0 − 2d2DDrv

2
0 + d2v4

0 + 6dv4
0 − v4

0

)
(d − 1)3d2D3

r

. (17)

In terms of D‖ and D⊥, the above expression corresponds
to anisotropic ABP. Using d = 2, it reduces to the result for
anisotropic ABP in two dimensions [28].

For Dv = 0 Eq. (17) agrees with the fourth moment of the
usual ABPs obtained in Ref. [21]. The fourth moment of a
general Gaussian process obeys

μ4 = 〈r2〉2 + 2

d
(〈r2〉2 − 〈r〉4). (18)

Using the expression of 〈r4〉(t ), the kurtosis in d dimensions
is defined as

K = 〈r4〉
μ4

− 1. (19)

In Fig. 4(a) we show the comparison between analytic expres-
sion (lines) and numerical simulation results (points) in d = 2
dimensions for 〈r4〉. Figure 4(b) shows the time dependence
of kurtosis.

A. Crossovers in mean-quartic displacement

To analyze the crossovers in 〈r4〉 in d = 2, we expand the
analytical expression in Eq. (17) around t = 0 to obtain

〈r4(t )〉 = (
12D2

v + 32DvD + 32D2
)
t2

+
[

4(3Dv + 4D)v2
0 − 16

3
D2

vDr

]
t3

+
(

v4
0 + 16D2

vD2
r

3
− 16

3
DDrv

2
0 − 20

3
DvDrv

2
0

)
t4

−
(

2

3
v4

0Dr+64D2
vD3

r

15
−4DD2

r v
2
0

3
− 11DvD2

r v
2
0

3

)
t5

+ O(t6). (20)

This gives the expression in the short time limit

〈r4〉t→0 = (
12D2

v + 32DvD + 32D2
)
t2. (21)

In the long time limit, Eq. (17) for d = 2 gives

〈r4(t )〉t→∞ ≈ 8

[
(Dv + 2D)2 + 2Dvv

2
0

Dr

]
t2. (22)

(a)

(b)

FIG. 4. (a) Fourth moment and (b) kurtosis of displacement as a
function of time in d = 2. (a) The points denote simulation results
and the lines are plots of Eq. (17). The speed fluctuation is set
at D̃v = 1. For Pe = v0τr/�̄ = 4 (�) two crossovers are identified
at tI/τr ≈ 0.17 and tII/τr ≈ 6.38. The plot for Pe = 10 (♦) shows
three crossovers at tI/τr ≈ 0.027, tII/τr ≈ 0.32, and tIII/τr ≈ 1.42.
(b) Plot of kurtosis K as a function of time at Pe = 4 (�, solid line)
and Pe = 10 (♦, dashed line) with D̃v = 1. The red solid (dashed)
line corresponds to D̃v = 1 (0) and Pe = 0 (10). The points denote
simulation results and the lines plot Eq. (19).
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The difference between the small and long time fourth order
moments gives

〈r4〉t→∞ − 〈r4〉t→0 ≈ 4Dv

Dr

(
4v2

0 − DvDr
)
t2, (23)

which arises due to the active speed fluctuation. Whether 〈r4〉
will eventually increase or decrease with time depends on if
speed fluctuation is small 4v2

0 > DvDr (Pe2 > D̃v/4) or large
4v2

0 < DvDr (Pe2 < D̃v/4). The parameter values in Fig. 4(a)
obey the condition Pe2 > D̃v/4 and thus show increase in 〈r4〉
with time. The behavior of kurtosis is qualitatively similar to
the anisotropic active Brownian particle [28].

The nature of the crossovers in 〈r4(t )〉 can be analyzed
using the expansion in Eq. (20). The solid line in Fig. 4(a)
corresponding to D̃v = 1 and Pe = 4 shows 〈r4(t )〉 ∼ t2 to
∼t3 crossover at

tI/τr = 3
[
3D̃2

v+8(1+D̃v )
]/[

3(3D̃v + 4)Pe2 − 4D̃2
v

] ≈ 0.17,

followed by a crossover back to ∼t2 at

tII/τr = 4
[
3(3D̃v + 4)Pe2 − 4D̃2

v

]/[
3Pe4 + 16D̃2

v

− 4(4 + 5D̃v )Pe2
] ≈ 6.38. (24)

The dashed line in Fig. 4(a) corresponding to D̃v = 1 and
Pe = 10 shows the first crossover from 〈r4(t )〉 ∼ t2 to ∼t3

at tI/τr ≈ 0.027. The second crossover from 〈r4(t )〉 ∼ t3 to
∼t4 appears at tII/τr ≈ 0.32. The final crossover 〈r4(t )〉 ∼ t4

to ∼t2 appears at

tIII/τr = 5
[
3Pe4 + 16D̃2

v − 4(4 + 5D̃v )Pe2
]
D̃2

v/[10Pe4

+ 64 − 5(4 + 11D̃v )Pe2] ≈ 1.42. (25)

B. Kurtosis

We show the evolution of kurtosis in Fig. 4(b). Their be-
havior depends on the competition between persistence v2

0/Dr

and speed fluctuations Dv given by the ratio of Pe2 and D̃v . For
finite values of Pe2 and D̃v , it remains positive in the short time
regime governed by speed fluctuation. Eventually, the kurtosis
shows an intermediate time deviation to negative values, con-
trolled by the orientational fluctuations, before asymptotically
vanishing corresponding to a long-time Gaussian limit. In
Fig. 4(b), the points denote simulation results and the lines
through them plot Eq. (19). We further compare them with the
behavior of kurtosis in the (two) limits of finite (vanishing)
Pe2 and vanishing (finite) D̃v . At vanishing D̃v , our model
reduces to traditional ABPs with constant active speed and,
as a result, reproduces the known behavior of kurtosis of that
model [21]. On the other hand, at vanishing Pe2, the behavior
of kurtosis is completely dominated by speed fluctuations. It
remains positive until vanishing asymptotically at the long
time limit. Similar behavior was observed for anisotropic
ABPs in two dimensions [28]. As we have mentioned before,
due to the direct mapping of our model to anisotropic ABPs,
our d-dimensional calculation for kurtosis replacing D = D⊥
and Dv = D‖ − D⊥ gives the kurtosis for anisotropic ABPs in
arbitrary d dimensions.

In Fig. 5(a), we show a kymograph of kurtosis describing
its time evolution at different Pe, keeping the speed fluctu-
ation D̃v = 1 fixed. The amount of negative deviation of K

FIG. 5. Deviation from Gaussian nature: kymographs of the kur-
tosis K as a function of time t/τr of the two-dimensional ABP for
different Pe at D̃v = 1 (a) and for different D̃v at Pe = 10 (b).

at intermediate times increases with Pe to eventually saturate
at K ≈ −0.4. At larger Pe, the deviations towards negative
kurtosis appear earlier. At longer times, K vanishes asymp-
totically. Figure 5(b) shows the kymograph of K describing
its time evolution at different speed fluctuations D̃v for a
fixed Pe = 10. At short times K remains positive, showing
increased positive deviations in the presence of larger speed
fluctuation D̃v . As before, K shows deviations to negative
values at intermediate times before vanishing asymptotically.
However, the onset of negative deviations of kurtosis requires
a longer time in the presence of stronger speed fluctuations.
The kurtosis of displacement can be measured directly in
video microscopy experiments involving active Brownian par-
ticles. The amount of positive kurtosis at short times will show
the importance of speed fluctuations in their dynamics.

V. DISPLACEMENT DISTRIBUTIONS

To gain further insights into the dynamical crossovers,
we present displacement distributions obtained from direct
numerical simulations for ABP trajectories of dimension-
less length L̃ = L/�̄ with L = v0t at a fixed activity Pe =
v0τr/�̄ = 31.6. In Fig. 6, we plot the distribution functions
p(r̃) of the scaled displacement r̃ = r/L corresponding to
D̃v = Dvτr/�̄

2 = 10 (red solid lines). To clearly identify the
impact of speed fluctuations on these distributions, we com-
pare them with distributions obtained for ABPs in the absence
of speed fluctuations D̃v = 0 (green dashed line). They show
two kinds of reentrant transitions.

In the presence of speed fluctuations. With increasing length
of trajectories the distribution shows a reentrant transition
from compact trajectories characterized by a unimodal dis-
tribution with maximum at r̃ = 0 in Fig. 6(a) to one with
the maximum corresponding to extended trajectories with
r̃ ≈ 1 in Fig. 6(d) to finally return to compact trajectories
characterized by a Gaussian distribution with the maximum at
r̃ = 0 in Fig. 6(f). Both the transitions between extended and
compact trajectories are mediated by bimodal distributions as
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(a) (b) (c)

(f) (e) (d)

FIG. 6. Probability distributions of displacement 2π p(r̃) with
r̃ = r/L at Pe = v0τr/�̄ = 31.6 and D̃v = Dvτr/�̄

2 = 10 (solid line)
compared against the results for ABP with constant speed D̃v = 0
(dashed line) over different time segments L̃ = v0t/�̄ = 0.032 (a),
0.63 (b), 3.16 (c), 31.62 (d), 126.49 (e), and 316.23 (f). The left
(right) 2π p(r̃) range in (c) and (d) corresponds to D̃v = 10 (D̃v = 0
dashed).

can be seen in Figs. 6(c) and 6(e). Such intermediate bimodal
distributions describe coexistence of compact and extended
trajectories characterizing two first order like transitions.

In the absence of speed fluctuations. As is demonstrated in
Fig. 6, the displacement distributions at D̃v = 0 (dashed green
lines) show a different kind of reentrant evolution. The initial
Gaussian distribution peaked at r̃ = 0 characterizing compact
trajectories [Fig. 6(a)] transits to a distribution with a single
maximum near r̃ = 1 corresponding to extended trajectories
[Figs. 6(c) and 6(d)] like ABPs with speed fluctuation. The
significant qualitative difference is in the way this transition
progresses. It is continuous with intermediate distributions
being unimodal unlike with D̃v �= 0, where the transition is
mediated by bimodal distributions. However, at later times
the difference between the two cases disappears. The inter-
mediate time unimodal distribution of extended trajectories
[Fig. 6(d)] returns to a final Gaussian distribution of compact
trajectories [Fig. 6(f)] via a bimodality in the distribution
[Fig. 6(e)] identical to ABPs with speed fluctuations. Thus
the reentrant transitions in this case are different—the first
compact-extended transition is continuous followed by a first
order transition between extended-compact mediated by their
coexistence.

Note that the control parameters D̃v and Pe can be ex-
pressed in terms of D, Dp = v2

0/Dr , and Dv , the three terms
controlling the effective diffusion in Eq. (9), such that D̃v =
Dv/D and Pe2 = Dp/D. Thus the relative strength of Pe and
D̃1/2

v influences the displacement statistics. Further, the ratio
L̃/Pe is equivalent to the persistence ratio L/λ of the trajec-
tory length L = v0t and the persistence length λ = v0τr . This
ratio is known to control the extension statistics of persistent
random walks and wormlike chains [21,55]. As can be seen
from Fig. 6, the value of dimensionless trajectory length L̃

compared to the speed fluctuation scale D̃1/2
v and the activity

Pe determines the properties of the displacement distributions.
In Fig. 6(a) and Fig. 6(b), L̃ � D̃1/2

v < Pe for D̃v =
10. From the perspective of directional persistence, the tra-
jectories in this regime are equivalent to rigid rods, as
the persistence ratio L̃/Pe = L/λ ∼ 10−2. The unimodal
distribution p(r̃) with the maximum at r̃ = 0 for these quasi-
one-dimensional trajectories are determined by the speed
fluctuation D̃v and translational diffusion D. The increased
fluctuation due to D̃v in Fig. 6(b) shrinks the trajectories fur-
ther producing a narrower distribution p(r̃), a behavior absent
from trajectories with D̃v = 0. This behavior changes into a
bimodal distribution in Fig. 6(c), where L̃ ∼ D̃1/2

v < Pe. The
maximum at the origin is again due to the speed fluctuations.
However, compared to the trajectory length, the speed fluctu-
ation is significantly smaller than in the previous two cases,
allowing the system to show the second maximum in p(r̃)
near r̃ ≈ 1 corresponding to extended trajectories of persistent
motion at L̃/Pe = 0.1. Note that, for trajectories in the ab-
sence of speed fluctuations D̃v = 0, the maximum at r̃ = 0 is
absent and, as a result, the distribution remains unimodal with
a maximum near r̃ = 1. For longer trajectories in Figs. 6(d)–
6(f), L̃ > D̃1/2

v , the speed fluctuation can be neglected and
the change in p(r̃) is equivalent to ABPs in the absence of
speed fluctuations. The transition in this regime can be inter-
preted in terms of simple persistent motion and equivalently
to the WLC polymer [21,55]. The single maximum in p(r̃) in
Fig. 6(d) corresponds to extended configurations of a WLC
polymer at persistent ratio L̃/Pe = 1. Similar behavior was
observed earlier in Refs. [21,55]. Figure 6(e) corresponds to
the persistent ratio L̃/Pe = 4. The bistability observed in this
regime is equivalent to the rigid rod–flexible chain bistability
observed for WLCs in the same regime of persistent ratio [55].
For longer trajectories with L̃/Pe = 10, the distribution turns
into unimodal Gaussian distribution with the maximum at r̃ =
0. This is the asymptotic long-time behavior of the trajectories
and corresponds to the flexible chain limit of WLCs [55].

Note that the first crossover from compact trajectories in
Fig. 6(a) to extended trajectories in Fig. 6(d) via the bi-
modality in Fig. 6(c) is due to the active speed fluctuation.
This behavior is absent in ABPs moving with constant speed.
The second crossover from the extended state in Fig. 6(d)
to the Gaussian compact state in Fig. 6(f) is controlled by
persistence as the impact of speed fluctuations for these long
trajectories can be neglected. Thus a direct measurement of
the displacement distributions can identify the importance of
speed fluctuation in the dynamics of active particles. In a
recent publication we have shown a mapping of trajectories of
ABPs with constant speed and in the presence of thermal dif-
fusion to configurations of a semiflexible polymer [21]. Thus
the second crossover seen in the present context is similar to
the transition in polymer properties in the WLC model via
phase coexistence. The results obtained here map directly to
anisotropic ABPs [28,29] interpreting Dv = D‖ − D⊥, where
D⊥ = D.

VI. DISCUSSION

We considered the impact of active speed fluctuations
on the d-dimensional motion of an active Brownian particle
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(ABP). In the absence of any explicit relaxation mechanism,
the model we considered is simpler than, e.g., the Schienbein-
Gruler model [50,51]. However, it still shows significant
departures from ABPs with constant active speed. The speed
fluctuation leads to an anisotropy to displacement fluctua-
tions [28,29]. We utilized a Laplace transform method for the
Fokker-Planck equation, originally proposed to understand
the wormlike chain (WLC) model of semiflexible polymers
[46], to find exact expressions for dynamical moments of
ABPs in arbitrary dimensions. This method allowed us to
obtain several such moments, including the mean-squared
displacement, displacement fluctuations parallel and perpen-
dicular to the initial heading direction, and the fourth moment
of displacement to characterize the dynamics. Our results
showed good agreement with direct numerical simulations.
We found several dynamical crossovers and identified the
crossover times using the exact analytic expressions. They
depend on the activity, persistence, and speed fluctuation of
the ABP.

The speed fluctuation in the presence of persistence led to a
significant anisotropy. At strong speed fluctuation, the parallel
component of displacement fluctuation showed subdiffusive
scaling and nonmonotonic variations at intermediate times,
unlike the perpendicular component. The exact calculation of
kurtosis measuring the non-Gaussian nature of the stochastic
displacement remained positive at short times controlled by
the speed fluctuation. It crossed over to a negative minimum
at intermediate times, a behavior governed by the persis-
tence of motion, before vanishing asymptotically at long times
characterizing the asymptotic Gaussian nature of the ABP
trajectories.

To further analyze the dynamics, we used direct numerical
simulations in two dimensions to obtain the probability distri-
butions of ABP displacement as the time elapsed. It showed
reentrant transition with two crossovers between compact and
extended trajectories via two separate bimodal distributions at
intervening times. The bimodalities signify the coexistence of
the compact and extended trajectories. The short-time coex-
istence is determined by the speed fluctuation and is absent
in ABPs with constant speed, as we have shown explicitly.
The second coexistence is controlled by persistence and is
equivalent to the transition between the rigid rod and flexible
polymer via the coexistence of the two conformational phases
observed with a change in persistence ratio in the WLC model
[55].

The generation of active speed from underlying stochas-
tic mechanisms, e.g., as considered in Refs. [2,40,43,50],
involves inherent speed fluctuations. Such fluctuations are
present in active colloids performing phoretic motion [9] and
mechanisms generating motion in motile cells and bacteria
[8,36,37]. Our predictions can be tested in experiments on
tagged active particles and our results can be used in analyzing
the dynamics of motile cells.

In experiments on active Brownian particles, the impact of
speed fluctuations can be most easily observed in the sub-
diffusive scaling of the parallel component of displacement
fluctuation, positive kurtosis, and the evolution of displace-
ment distribution that according to our prediction should show
two bimodalities in a reentrant transition from compact to
extended to compact trajectories. As we mentioned, speed

fluctuations lead to anisotropy, however, it has a qualitative
difference compared to shape anisotropy considered before
[28,29]. The shape anisotropy is directly observable in optical
microscopy and can be independent of the amount of activity.
In contrast, speed anisotropy is expected to increase with
activity and is not related to particle shape. This aspect can
be directly verified in experiments on active particles.

Note that speed fluctuations can also arise due to inter-
particle collisions in a dense dispersion of ABPs [33,34]. In
their run and tumble motion, several bacteria show switching
between different active speeds [38,39]. Our methods can be
extended to better understand the nonequilibrium dynamics of
such systems.
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APPENDIX A: COMPONENTS OF DISPLACEMENT
FLUCTUATION

We assume the initial heading direction û0 = x̂ towards the
positive x axis. Thus the second moment of the component of
displacement parallel to initial heading direction r2

‖ = x2 can
be calculated using ψ = x2 in Eq. (5). This gives

s〈r2
‖〉s = 2Dv

〈
u2

x

〉
s + 2D/s + 2v0〈xux〉s.

Using Eq. (5) it is straightforward to show 〈u2
x〉s = (s+2Dr )

s(s+2dDr )

and 〈xux〉s = v0
s+(d−1)Dr

〈u2
x〉s. Thus we obtain

〈r2
‖ 〉s = 2Dv (s + 2Dr )

s2(s + 2dDr )
+ 2D

s2

+ 2v2
0 (s + 2Dr )

s2[s + (d − 1)Dr](s + 2dDr )
. (A1)

Performing the inverse Laplace transform we find the time
dependence,

〈r2
‖ 〉 = 2

(
D + Dv

d
+ v2

0

(d − 1)dDr

)
t

+ (d − 1)Dv

d2Dr
(1 − e−2dDrt )

+ v2
0

D2
r

(
(d − 1)e−2dDrt

d2(d + 1)
+ 2(3 − d )e−(d−1)Drt

(d − 1)2(d + 1)

+ d2 − 4d + 1

(d − 1)2d2

)
. (A2)

It is easy to obtain the relative fluctuation 〈δr2
‖ 〉 = 〈r2

‖ 〉 − 〈r‖〉2

noting that the displacement 〈r‖〉 = 〈r · û0〉 = v0
(d−1)Dr

(1 −
e−(d−1)Dr t ). The fluctuation in the perpendicular component
〈δr2

⊥〉 = 〈r2
⊥〉, as the mean 〈r⊥〉 = 0. Thus 〈δr2

⊥〉 = 〈r2〉 −
〈r2

‖ 〉.
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APPENDIX B: QUARTIC MOMENT OF DISPLACEMENT

Proceeding as before, using ψ = r4 in Eq. (5) and the
relations

s〈r4〉s = 4Dv[〈r2〉s + 2〈(û · r)2〉s] + 4(d + 2)D〈r2〉s

+ 4v0〈(û · r)r2〉s,

s〈û · r〉s = −(d − 1)Dr〈û · r〉s + v0〈1〉s,

s〈(û · r)2〉s = 2Dv〈1〉s + 2Dr〈r2〉s − 2dDr〈(û · r)2〉s

+ 2D〈1〉s + 2v0〈û · r〉s,

s〈(û · r)r2〉s = 6Dv〈û · r〉s − (d − 1)Dr〈(û · r)r2〉s

+ (4 + 2d )D〈û · r〉s + v0〈r2〉s + 2v0〈(û · r)2〉s,

it is straightforward to obtain the fourth moment of displace-
ment in the Laplace space

〈r4〉s = 8[Dv + (d + 2)D](Dv + dD)
1

s3
+ 16Dv (Dv + D)

s2(s + 2dDr )

+ 32Dv (Dv + D)Dr

s3(s + 2dDr )
+ 8Dvv

2
0[5s + 2(d − 1)Dr]

s3[s + (d − 1)Dr]2

+ 32Dvv
2
0 (s + 2Dr )

s3[s + (d − 1)Dr](s + 2dDr )

+ 8Dv2
0 (d + 2)[3s + 2(d − 1)Dr]

s3[s + (d − 1)Dr]2

+ 8v4
0[3s + 2(d + 2)Dr]

s3[s + (d − 1)Dr]2(s + 2dDr )
. (B1)

Performing the inverse Laplace transform, one gets the time
evolution of the fourth moment.

APPENDIX C: COMPONENTS OF 〈δr2〉 IN THE WEAK
SPEED FLUCTUATION (v2

0 > DvDr) LIMIT: CROSSOVER
ANALYSIS

The parallel component 〈δr2
‖ 〉 first crosses over from

〈δr2
‖ 〉 ∼ t to 〈δr2

‖ 〉 ∼ t3 at tI ≈ [3(1 + D/Dv )/4]1/2D−1
r fol-

lowed by another crossover from 〈δr2
‖ 〉 ∼ t3 to 〈δr2

‖ 〉 ∼
t4 at tII ≈ [8DvDr/(v2

0 − 8DvDr )]D−1
r and finally in the

long time limit a further crossover to 〈δr2
‖ 〉 ∼ t at tIII ≈

[5(v2
0 − 8DvDr )/(7v2

0 − 32DvDr )]D−1
r when tI < tII < tIII is

satisfied. As before, the crossover times are calculated by
comparing different terms in Eq. (13). The condition tIII >

tII leads to v2
0 > [(68 + √

1744)/5]DvDr and the condition
tII > tI amounts to v2

0 < {16[D3
v/3(D + Dv )]1/2 + 8Dv}Dr .

Even for D = 0, the condition tII > tI corresponding to v2
0 <

(16/
√

3 + 8)DvDr conflicts with the assumption of v2
0 >

DvDr . It suggests that 〈δr2
‖ 〉 ∼ t3 is not possible. Thus the

possible crossovers are 〈δr2
‖ 〉 ∼ t to 〈δr2

‖ 〉 ∼ t4 and finally
to 〈δr2

‖ 〉 ∼ t . The first crossover 〈δr2
‖ 〉 ∼ t to 〈δr2

‖ 〉 ∼ t4 can
appear at

t‖
I = [

6(D + Dv )/
(
v2

0 − 8DvDr
)]1/3

and the second crossover 〈δr2
‖ 〉 ∼ t4 to 〈δr2

‖ 〉 ∼ t can appear
at

t‖
II = tIII = [

5
(
v2

0 − 8DvDr
)
/
(
7v2

0 − 32DvDr
)]

D−1
r .

One possible scenario of crossovers in 〈δr2
⊥〉 is the follow-

ing: (i) from 〈δr2
⊥〉 ∼ t to 〈δr2

⊥〉 ∼ t3 at

t⊥′
I Dr = [

3DDr/
(
v2

0 − 4DvDr
)]1/2

with the condition v2
0 > 4DvDr + 3D2

vDr/D (t⊥
II < t⊥

I ); (ii)
back to 〈δr2

⊥〉 ∼ t at

t⊥
III Dr = [

4
(
v2

0 − 4DvDr
)
/
(
5v2

0 − 16DvDr
)]

if the condition v2
0 > [(47 + √

417)/8]DvDr (t⊥
II < t⊥

III ) is sat-
isfied. Moreover, tIII > tI leads to the condition v2

0 > 16(D −
Dv )DvDr/(5D − 4Dv ).

Another scenario of possible crossovers are 〈δr2
⊥〉 ∼ t to

〈δr2
⊥〉 ∼ t2 at

t⊥
I Dr = D/Dv

with condition v2
0 < 4DvDr + 3D2

vDr/D (t⊥
II > t⊥

I ) to
〈δr2

⊥〉 ∼ t3 at

t⊥
II = 3Dv/

(
v2

0 − 4DvDr
)

with condition v2
0 > [(47 + √

417)/8]DvDr (t⊥
III > t⊥

II ) to
〈δr2

⊥〉 ∼ t with condition v2
0 > 4DvDr at t⊥

III Dr .
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