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We consider a model of an extensible semiflexible filament moving in two dimensions on a motility

assay of motor proteins represented explicitly as active harmonic linkers. Their heads bind stochastically

to polymer segments within a capture radius, and extend along the filament in a directed fashion before

detaching. Both the extension and detachment rates are load-dependent and generate an active drive

on the filament. The filament undergoes a first order phase transition from the open chain to spiral

conformation and shows a reentrant behavior in both the active extension and the turnover, defined as

the ratio of attachment–detachment rates. Associated with the phase transition, the size and shape of

the polymer change non-monotonically, and the relevant autocorrelation functions display a double-

exponential decay. The corresponding correlation times show a maximum signifying the dominance of

spirals. The orientational dynamics captures the rotation of spirals, and its correlation time decays with

activity as a power law.

1 Introduction

The cytoskeleton of living cells consists of semiflexible filaments
like F-actins and microtubules, and motor proteins (MPs).1,2 The
MPs hydrolyse ATP to undergo binding, and unbinding cycles
and move in a directional manner along the associated
filaments.3–5 On the cross-linked filaments of the cytoskeleton,
the active chemical cycle of MPs generates mechanical stress to
maintain the cell structure and dynamics.6,7 The MPs drive the
energy flux at the smallest length scales of the system, typical of
active matter.8–10 This breaks the detailed balance, and the
equilibrium fluctuation–dissipation relation.

The in vitro molecular motor assays are often used to derive
a direct physical understanding of the active properties of
filaments and MPs.11–14 The motility assay setup with actin
filaments or microtubules floating on top of an immobilized
MP-bed showed fascinating dynamical behaviors, e.g., spiral
formation, collective gliding and swirling.14–18 For the spiral
formation of microtubules on the kinesin assay,14,15 a

microtubule-specific theory has been recently developed.19

However, a similar behavior has been observed in other active
polymer studies.20–25

In this paper we consider a detailed theoretical model of a two-
dimensional motility assay, and study the change in the shape
and size of an extensible semiflexible polymer driven by MPs. In
our model, the MPs are immobilized by attachment of their tails
to a substrate, while the head domains undergo active attach-
ment–detachment with the filament, and drive the filament by
performing active extension. The detachment and extension rates
are assumed to be load dependent in a manner consistent with
established MP models.26,27 Most of the current studies which
attempt to understand the static and dynamic properties of a
filament in the presence of activity, either consider the polymers
to be made up of active monomers with a constant velocity in the
tangential direction or introduce activity via an active noise
term.20–25,28–36 However, the two-fold effect of MPs on the con-
formational and dynamical properties of a semiflexible filament are
profound and therefore need explicit consideration.37–39

We perform extensive numerical simulations to study the
polymer in a motility assay, and use phenomenological arguments
to illustrate several findings. We obtain a first order conforma-
tional transition from open chain to spiral as a function of the
MP activity, which has two main aspects: (i) the rate of extension,
and (ii) the turnover – given by the ratio of attachment–
detachment rates. The transition is characterized by the coexistence
of the open and spiral phases. Obtaining the resultant phase
diagram is the first main contribution of this paper. It shows a
remarkable reentrant transition from open chain to spiral to
open chain with increasing activity. The spirals are characterized
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by their turning number. An approximate data-collapse of the
non-monotonic variations of the mean squared turning number
with active extension for different turnovers leads to a scaling
function. This is supported by a torque-balance argument,
which also describes the phase boundary. This is our second
main contribution. The distribution function of the end-to-end
separation shows bi-stability capturing the coexistence between
open and spiral states. We use the radius of gyration tensor to
determine the instantaneous size, shape, and effective orientation
of the polymer. Accompanied by the reentrant transition, the
polymer size, and shape-asymmetry show non-monotonic
variations with activity. The non-monotonic variation in size
shows a qualitative difference with respect to that of polymers
in an active bath.22 We study the steady state dynamics using the
two-time autocorrelation functions. The dynamics of turning
number, size and shape of the polymer depend on the conforma-
tional changes. Their autocorrelations reveal a double-exponential
decay at the phase-coexistence, corresponding to the relaxation
within a state, and slow transition between the states. The
correlation time shows non-monotonic variation with a maximum
at an intermediate rate of MP extension. This is our third main
result. The autocorrelation function of the instantaneous orientation
of the polymer conformation shows an overall single time-scale
decay, and oscillations related to the rotation of the spirals at
higher activity. The corresponding correlation time decreases
with MP extension rate as a power-law.

The plan of the paper is as follows. In Section 2 we present
the detailed model of the motility assay and the extensible
semiflexible polymer. We present our results in Section 3. In
Section 3.1 we demonstrate the spiral formation with the help
of the turning number. Using its probability distribution, in
Section 3.1.1, we demonstrate a first order phase transition
from open chain to spiral with increasing activity. The phase
diagram is presented in Section 3.1.2. In Section 3.1.3 we
discuss an approximate scaling form of the turning number
fluctuations. In Section 3.2 the end-to-end distribution
function, the change in polymer size, and shape are discussed.
This is followed by a discussion of the polymer dynamics in
terms of autocorrelation functions of the turning number,
polymer size, shape, and orientation in Section 3.3. Finally,
we conclude in Section 4 summarizing our main results.

2 Model and simulation

We consider an extensible semi-flexible polymer of N-beads
with monomer positions r1, r2,. . .,rN. The chain is described
by both stretching and bending energy terms. The bond vectors
bi = ri+1 � ri are defined for i = 1, 2,. . .,N � 1 and are oriented
along the local tangents t̂i = bi/|bi|. The connectivity of the
chain is maintained by the stretching-energy

Es ¼
XN�1
i¼1

A

2r0
bi � r0 t̂i½ �2; (1)

characterized by the bond-stiffness A and the equilibrium
bond-length r0. The bending rigidity k of the semiflexible

filament leads to a bending energy cost between the consecutive
tangent vectors:

Eb ¼
XN�2
i¼1

k
2r0

t̂iþ1 � t̂i½ �2: (2)

The self-avoidance of the filament is implemented through a
short-ranged Weeks–Chandler–Andersen repulsion between all
the non-bonded pairs of beads i and j,

EWCA ¼ 4 ðs=rijÞ12 � ðs=rijÞ6 þ 1=4
� �

if rij o 21=6s

¼ 0; otherwise
(3)

Thus the full polymer model is described by the energy cost
E = Es + Eb + EWCA. The energy and length scales are set by e and
s respectively. The corresponding microscopic time scale is

t0 ¼ s
ffiffiffiffiffiffiffiffi
m=e

p
.

In the motility assay setup, the polymer is placed on a
substrate of MPs (Fig. 1). The MPs are assumed to be immobilized
by attachment of their tails irreversibly to the substrate at
positions ri

0 = (xi
0,yi

0) placed on a two dimensional square lattice
with a uniform density r. The heads of MPs can attach to the
nearest bead of the polymer within a capture radius rc through
a diffusion limited process which is implemented by a constant
attachment-rate oon. The stalks of the MPs are modeled as
elastic linkers of stiffness km. The extension Dr of an MP in the
attached state generates an elastic force fl = �kmDr on the
segment of the filament it is attached to. This extension can be
due to two processes: (i) the attached head may be dragged by
the filament, and (ii) it can move actively over the filament
towards one of its ends. The attached head moves along the
bonds. Thus its instantaneous location can be anywhere
between the beads. The MP-extension generates a force fl,
which is divided between the beads forming the bond on which
the MP-head is located. This is done using the lever rule, and
depends on the relative separation of the MP-head with respect
to the polymer beads. The nearer the MP is to a specific bead,
the larger is the share of the force on it. For example, attached
kinesins (dyeneins) move along the microtubule towards its
positive (negative) end. The active velocity is known to decrease

Fig. 1 A schematic diagram of the system showing a polymer floating on
the motility assay. The tails of MPs are attached irreversibly on a square
grid. The head domains can attach to the filament, when any segment of it
comes within the capture radius. The active extension of the attached
head along the filament generates a force in the opposite direction. The
MP stalk is modeled as a harmonic spring.
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with resistive load, and can be modeled as26,37

vat ð ftÞ ¼
v0

1þ d0 expð ft=fsÞ
; (4)

where ft = �fl�t̂, d0 = 0.01 and fs is the stall force. Here v0 denotes
the velocity of free MPs. The actual extension Dr, and as a result
ft on different MPs, is different. It depends on the time spent in
the attached state, which in turn depends on the stochastic
detachment rate

ooff = o0 exp( fl/fd), (5)

where o0 is the bare off rate, fl = |fl| and fd sets the scale of the
detachment force. The ratio oon :ooff does not obey detailed
balance. The net force imparted by MPs depends on the
processivity O( fl) = oon/(oon + o0 exp( fl/fd)).

We perform molecular dynamics simulations of the polymer
using beads of unit mass m = 1, in the presence of a Langevin
heat bath of isotropic friction per bead g = 1/t0 keeping the
temperature constant at kBT = 1.0e. We use bond-stiffness A =
100e/s for the N = 64 bead chain. In the equilibrium worm-like-
chain, the ratio of the contour length L = (N � 1)r0 to persis-
tence length l = 2k/[(d � 1)kBT], the rigidity parameter u = L/l,
determines whether the filament behaves like a rigid rod or a
flexible polymer.40,41 The end-to-end distribution of the worm-
like-chain shows a Gaussian chain behavior with a single
maximum at zero-separation at u E 10, and a rigid-rod beha-
vior with a single peak near full extension of the chain at u E 1.
In the semiflexible regime of u = 3 to 4, the free energy shows a
characteristic double minimum corresponding to the coexis-
tence of both the rigid rod and flexible chain behaviors. To
probe this regime, we choose k/r0kBT = 9.46 corresponding to
u = 3.33. Unless stated otherwise, we choose the equilibrium
bond-length r0 = 1.0s. At this point it is important to note that
the typical size of individual MPs are three to four orders of
magnitude smaller than the typical length of polymers used in
motility assay setups. Incorporating this large length scale
separation makes the numerical simulations prohibitively
expensive. We use a capture radius rc = 0.5s, and MP density
r = 3.8s�2 in our simulations. To avoid the introduction of
further energy scales, we use km = A/s. To maintain active forces
larger than thermal fluctuations, we use fs = 2kBT/s, fd = fs.

The dynamics of the active system is characterized by the
dimensionless ratio of attachment and detachment rates
oon/o0, and a dimensionless Péclet number Pe = v0L/Dt expressed
as a ratio of convective and diffusive transport of the filament.
Using the translational diffusion coefficient of the polymer Dt =
D/(L/r0) with D = kBT/g, one obtains Pe = v0L2/Dr0. This expression,
along with the rigidity parameter u = L/l, gives the flexure
number Pe u = v0L3(d � 1)/2kr0, which plays a crucial role in
determining buckling instability, and spiral formation in active
polymers.16,21,28 The characteristic time for the filament to
diffuse over its contour length L is t = L3g/4r0kBT. We use this
as a unit of time in expressing the time-scales in simulation
results. The numerical integrations are performed using dt
adjusted for numerical stability. The presence of turnover
reduces the effective active force imparted on the chain, as MPs

detach under longer extension. As a result, the smallest dt
required in these simulations is 1.6 � 10�8t, larger than what
was necessary for active polymer simulations.21 The results are
presented here from simulations over 2 � 109 steps, discarding
the first 109 steps to ensure steady state measurements.

3 Results

In this section we present the results of numerical simulations.

3.1 Formation of spiral

Beyond a minimum on–off ratio oon/o0, and activity Pe, the
polymer spontaneously starts to get into spiral structures. The
nature of the spiral can be quantified in terms of the turning

number,42 ci ¼ ð1=2pÞ
Pi�1
j¼1

yjþ1 � yj
� �

where yj is defined by t̂j =

(cos yj,sin yj), and [yj+1 � yj] gives the angle increment between
consecutive bonds. Thus, turning number cN with i = N
measures the (real) number of turns the chain takes between
its two ends. For a straight chain cN = 0, and for a chain forming
a single anticlockwise (clockwise) loop cN = 1 (cN = �1). Larger
values of cN correspond to more than one turn forming the
spiral. In Fig. 2 we show a typical time series of cN, along with
three representative conformations corresponding to cN E 0
and a turning number cN E �3.

3.1.1 First order phase transition: open chain to spiral. In
Fig. 3(a) we show the steady state probability distributions of
the turning number p(cN) for different values of Pe, corres-
ponding to a fixed on–off ratio oon/o0 = 1. At small Pe we find a
unimodal distribution with the maximum located at cN = 0
corresponding to open chains. Upon increasing the activity to
Pe = 0.2 � 105 two other metastable maxima appear in p(cN)
near cN = �1.8, positioned symmetrically around the central
peak at cN = 0, which remains the global maximum. The
appearance of such metastable states across a phase transition
is a characteristic of a first order transition. As we increase Pe,

Fig. 2 Time evolution of the turning number cN at Pe = 105 and the ratio
oon/o0 = 1. Time t is expressed in the unit of t. The plot shows a stochastic
switching between three states, an open state with cN E 0, and two
spiral states with cN E �3. Representative polymer configurations
corresponding to the three states are shown at three time instances
indicated by arrows.
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the heights of the maxima correspond to spiral growth. Near
Pe = 0.67 � 105, all the three maxima of p(cN) become equally
probable, identifying the binodal point of the first order phase
transition from the open-chain to spiral (data shown in the
ESI†). The increase in the probability of the spiral states,
characterized by the increase of the height of the two non-
zero cN maxima, continues up to Pe = 1.19 � 105. This indicates
the further (de-) stabilization of the (open) spiral state. A
remarkable non-monotonic feature is observed with further
increase in Pe. For larger Pe, the non-zero cN-peaks corres-
ponding to the spiral states start to reduce in height with
respect to the peak at cN = 0. Again, near Pe = 1.58 � 105, all
three maxima attain the same height, indicating a binodal
corresponding to the reentrant transition back from the spiral
to the open chain state. At larger Pe, the heights of the non-zero
cN peaks keep diminishing with increasing Pe values. Despite
this non-monotonic nature of the stability of open and spiral
states, it should be noted that, all through, the positions of the
peaks at non-zero turning number cN consistently increases to
larger amplitudes of �cN as Pe increases. Thus, while the
probability of spirals at Pe 4 1.58 � 105 gets smaller with
increasing Pe, when formed, the spirals at higher Pe consis-
tently display higher turning numbers.

We analyzed all such probability distributions within a
range of 0 r Pe r 3.97 � 105, and attachment–detachment
ratios 0.1 r oon/o0 r 20 using the locations and heights of the
peak positions of p(cN). In Fig. 3(b), we show using J (red), the
cm

N values corresponding to the stable phase, i.e., the peak
position(s) of the global maximum (maxima) in p(cN). Points
denoted by } (blue) show the peak positions corresponding to
the metastable state(s), having peak heights smaller than the
global maximum. The dotted lines are a guide to the eye
showing the variation of the global maximum with increasing
Pe, which displays the open, to predominantly spiral, to pre-
dominantly open transition as expected from the probability
distributions. Note that the coexistent points, symmetric about
the central peak (points corresponding to cm

N = 0) mark the
familiar coexistence curves (binodal) in a first order phase
transition. The various transitions are the unique non-
equilibrium features of the motility assay set up. Similar non-
equilibrium features are observed when cm

Ns is plotted as a
function of the ratio oon/o0 at a constant Pe (Fig. 3(c)).

From the probability distribution of cN, and by using an
effective equilibrium-like approximation p(cN) B exp[�F(cN)]
we can write

FðcNÞ ¼
1

2
u2cN

2 � u4cN
4 þ u6cN

6; (6)

apart from an additive constant. Such a fitting with Fig. 3(a)
allows us to obtain the values of u2, u4 and u6 as a function of Pe
and oon/o0 ratio. It is straightforward to show43 that along the
first order line described by qF/qcN = 0 and F = 0, the turn
number obeys the relation cN = �(|u4|/2u6)1/2. This shows good
agreement with the simulation results (Fig. 3(b)). Moreover, the
spinodal lines, obeying qF/qcN = 0 and qF2/qcN

2 = 0, are given
by cN =�(u2/2u4)1/2, and are shown by the grey lines in Fig. 3(b).

3.1.2 Phase diagram. In Fig. 4, we plot the phase diagram
in the oon/o0 � Pe plane characterizing the open and spiral

Fig. 3 (a) Probability distribution functions of the turning number p(cN) for
different Pe = P̃e � 105 where values of P̃e are denoted in the figure legend,
at a fixed ratio oon/o0 = 1. The triple-maxima characterize the coexistence in
transition from open chains to spirals. The dependence of the stable (global)
(red J) and metastable (blue}) maxima of p(cN) are shown as a function of
Pe at oon/o0 = 1 in (b), and as a function of oon/o0 at Pe = 1.39� 105 in (c). In
(b), the green lines show the plot of�(|u4|/2u6)1/2, and the grey lines show the
plot of �(u2/2u4)1/2, where u2, u4 and u6 are defined by eqn (6).

Fig. 4 Phase diagram calculated from the probability distribution of the
turning number p(cN). The data points denoted by green n denote a stable
open chain state, in the complete absence of spirals. The blue & points
denote stable open chains in the presence of metastable spirals. The red
J denotes stable spirals coexisting with metastable open chains. The
boundaries between & and J denote the binodals where open chains
and spirals are equally probable. The solid line capturing one such phase
boundary is a plot of the function oon/o0 = a/(Pe � a) where a = 3.67 � 104

(see Section 3.1.3).
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states and their stability. The symbol D denotes the region
where the open chain is the only phase possible, with the
distribution p(cN) showing a single maximum at cN = 0. The
regions denoted by & indicate coexistence of the stable open
chain, with a metastable spiral phase. In the region denoted by
J in the phase diagram, it is the spiral state which is stable,
but coexistent with a metastable open state. The two boundaries
between the J and & in Fig. 4 identify the two binodal lines of
the first-order transition. Between them, both the open and the
spiral states are equally probable. The presence of these two
binodal lines characterize the reentrant nature of the first order
conformational transition of the polymer.

The phase diagram clearly brings out the importance of the
attachment–detachment kinetics of the MPs. At a fixed oon/o0,
the polymer goes from a stable open chain to stable spiral to
stable open chain reentrant transition with increase in Pe. At
higher attachment–detachment ratios, oon/o0 4 2 for the
parameters in our simulations, the region of stable spiral states
0.4 � 105 r Pe r 1.19 � 105, is independent of the oon/o0

ratio. At lower oon/o0, the region where the spiral state is the
stable state of the polymer appears at progressively larger Pe
values. Also the single maxima region, corresponding to only an
open chain conformation, persists for higher values of Pe at low
oon/o0.

Active polymers showed the formation of spirals at activities
larger than the onset of buckling instability.21 However, this did
not show the re-entrance behavior we find. Our detailed mod-
eling of the MP-bed allowed us to clearly characterize the
impact of the MP turnover, revealing the dependence on the
oon/o0 ratio. This remained outside the scope of the active
polymer model.

3.1.3 Turning number fluctuations. In this section we
consider the first two moments of the p(cN) distributions. This
is due to the fact that with respect to the full distributions,
moments are easier quantities to determine from experiments.
The chiral symmetry in the system p(�cN) = p(cN) ensures that,
all through, hcNi = 0. The quantitative measure of the effective
turning number is given by the root-mean square fluctuation
hcN

2i1/2. Fig. 5(a) shows the non-monotonic variation of hcN
2i

with Pe at fixed oon/o0 ratios, corresponding to the reentrant
transition. Re-scaling of Pe and hcN

2i leads to an approximate
data collapse as shown in Fig. 5(b). We can extract a functional
dependence of the scale factors A, B on the ratio q = oon/o0 as
A E Of (q) and B E 1/Of (q) (see the inset of Fig. 5(b)). Of (q)
has the form of a bare processivity, O( fl = 0) = oon/(oon + o0) =
q/(1 + q). The data-collapse suggests a functional dependence

hcN
2(q,Pe)i E Of (q)G[Of (q)Pe]. (7)

Fig. 5 (a) The steady state turning number fluctuation hcN
2i as a function of Pe at different values of oon/o0 ratios is denoted in the figure legend. (b)

Approximate data collapse of different plots in (a) by using scale factors A, and B. Inset: The dependence of A and B on q = oon/o0. The solid line Of =
1.42q/(0.52 + q) shows a fit to the data for A. The dotted line shows a fit (0.37 + q)/1.41q to the data for B in the regime q 4 0.3. The dashed–dotted line
is a plot of 1/Of. Comparison of the time series of cN for bond lengths r0 = 1.0s (red), 0.75s (blue) and 0.5s (green) are shown at Pe = 3.97 � 104 (c) and
Pe = 3.97 � 105 (d). Time t is expressed in the unit of t. The data for r0 = 0.75s and 0.5s are shifted upwards by 8 and 16 for better visibility. (e) Kurtosis
KcN

of the turning number cN plotted at oon/o0 = 0.2, 1.0, 20 with data shown by the same symbols as in (a). The open & and J denote data at
oon/o0 = 1.0 for r0 = 0.75s and 0.5s respectively.
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A spiral with radius R has a turning number cN = L/2pR. The
shape can be maintained via a torque balance FR2 = k/R, where
F denotes the MP force per unit length. This force depends on
fl, the force exerted due to the active extension of MPs, the
linear density of MPs

ffiffiffi
r
p

, and their processivity O( fl). The mean
of the active force fl is denoted here by fa E gv0. Thus, the net
active force per unit length F : ¼ ffiffiffi

r
p

faOð faÞ. This leads to the
following activity dependence of the turning number:

cN
2 B G1(O( fa), fa). (8)

Noting that Pe B fa, eqn (8) is related to but cannot fully
capture the scaling form in eqn (7). The reason lies in the fact
that the polymer switches between the spiral and open states,
and hcN

2i is averaged over the probability distribution span-
ning both the states.

The onset of spiral requires cN
2 4 1, i.e., F 4 Fc = k(2p/L)3.

Thus, the phase boundary denoting this is given by F: = faO( fa) =
Fc. In the limit of load-independent detachment rate, with fa B
Pe, the equality faO( fa) = Fc leads to a dimensionless form qPe/
(1 + q) = a, where q = oon/o0, and a denotes a dimensionless
constant proportional to Fc. This can be simplified to the
hyperbolic relation

oon/o0 = a/(Pe � a). (9)

In the phase diagram Fig. 4, the solid line is a plot of this
function with a = 3.67 � 104, and approximately captures the
phase boundary of the onset of the spiral phase.

As has been pointed out earlier,21,32 the modulation of
potential energy along the chain due to WCA repulsion from
polymer beads costs energy to slide chain segments past each
other. The resultant increase in sliding friction can increase the
lifetime of spirals. To examine this we consider chains of the
same contour length L but smaller bond lengths r0 = 0.75s and
0.5s having smoother potential profiles along the chain. In
Fig. 5(c) and (d) we show a comparison between their time
series of turning number cN at two activities, Pe = 3.97 � 104,
3.97 � 105, keeping oon/o0 = 1. We find the formation of spirals
in all the cases. As expected, the life-time of spirals corres-
ponding to all the different phases decreases with the reduction
of r0/s, smoothening the polymer. For each r0/s, however, the
time-scale shows non-monotonic variation with Pe (Section
3.3.3). A quantitative analysis of the time-scales are presented
in Fig. 10 of Section 3.3.3 and Appendix-D.

In Fig. 5(e) we see variation of kurtosis KcN
= [hcN

4i/3hcN
2i2� 1]

with Pe for three different r0/s ratios calculated at oon/o0 = 1. It
also shows KcN

(Pe) for oon/o0 = 0.2, 20.0 using the chain with
bond length r0 = 1.0s. To reduce the statistical uncertainties we
calculated kurtosis over several initial conditions such that the
distribution of cN becomes symmetric and restricts the analysis
to the spiral states.21 At small Pe we find KcN

= 0, consistent
with the Gaussian distribution. As the spirals start to appear
hcN

4i increases, increasing KcN
. At higher Pe, as the spirals

stabilize, the second cumulant hcN
2i starts to dominate reducing

KcN
from a maximum to eventually KcN

reach a minimum.

Finally, at further higher Pe, the kurtosis increases again corres-
ponding to the re-entrance.

The kurtosis KcN
calculated for three different values of

r0/s = 1.0, 0.75, 0.5 at oon/o0 = 1 in Fig. 5(e) displays a similar
non-monotonic behavior, but the peaks of the curves shift
towards larger Pe for smaller r0/s. For example, the peak
position of KcN

shifts from Pe = 4.4 � 104 at r0/s = 1.0 to
Pe = 6.0 � 104 at r0/s = 0.75 and to Pe = 7.9 � 104 at r0/s = 0.5.
Such a shift can be understood by noticing that the reduction in
r0/s increases the bending rigidity k of the filament. In
Appendix-A and Fig. 11 we show how the persistence length
of the equilibrium polymer increases with reduction in r0/s. As
has been pointed out before eqn (9), the active force Fc needed
for the onset of spiral increases linearly with k. Thus the spiral
formation at smaller r0/s requires higher Pe.‡

3.2 Size and shape

Associated with the active open to spiral transition, the polymer
undergoes significant change in its size and shape. In this
section we clearly demonstrate these transformations with the
help of (i) the end-to-end separation, and (ii) the radius of
gyration tensor.

3.2.1 End-to-end separation. In Fig. 6(a) we show the prob-
ability distribution of the scaled end-to-end separation r̃e = re/hLi
of the polymer for different Pe values at a fixed oon/o0, where hLi
denotes the mean contour length. The distribution function p(r̃e)

is normalized to
Ð 1
0d~re2p~repð~reÞ ¼ 1. At Pe = 0, it shows a single

maximum at r̃ E 0.8 corresponding to rigid-rod-like configurations.
This points to a relatively large effective bending rigidity of the
filament.38 Note that Pe = 0 does not imply an equilibrium
passive polymer, because of the active attachment–detachment
of the MPs with oon/o0 a 0. With increasing Pe, the distribution
changes qualitatively. At Pe = 0.2� 105, a new maximum appears
near r̃ E 0.15. This bimodality corresponds to the coexistence of
rod-like shapes with folded polymers, a behaviour that appears
even before the chain starts to form spirals. At further higher
activity, Pe Z 0.4 � 105, as the probability of the spiral-state
increases, the small r̃e maximum shifts to smaller values, and
their corresponding probability increases up to Pe = 1.19 � 105.
At even higher Pe, the spiral state starts to become less stable, as
has been discussed in Section 3.1.1. Associated with that, the
height of the small r̃e maximum in p(r̃e) decreases. This non-
monotonic behaviour is clearly observable in Fig. 6(a). The peak
at small r̃e increases with increasing activity in the range of Pe �
10�5 = 0.2 to 1. At higher activity, Pe � 10�5 = 0.99, 1.98, 3.57,
this peak-height decreases.

In Fig. 6(b), we show the non-monotonic variation of the
second moment of the end-to-end distribution hr̃e

2i with Pe, for
different oon/o0. For all oon/o0, hr̃e

2i initially decreases from
the value at Pe = 0 as the polymer starts folding and getting into
predominantly spiral states. As Pe is increased further, hr̃e

2i

‡ The availability of more attachment points of MPs for a filament with smaller
r0/s, within our model, could increase the imparted active force on the filament.
However, this effect would shift the HcN

graphs to smaller Pe, unlike what we
observe in Fig. 5(e).
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starts increasing since the stability of the spiral states
decreases. At small oon/o0, hr̃e

2i shows eventual saturation with
Pe. However, for larger oon/o0, the curve shows a further non-
monotonic behavior with an asymptotic increase in hr̃e

2i at
higher values of Pe 4 2.58 � 105. Note that a non-monotonic
variation of hr̃e

2i with Pe was observed earlier in polymers in an
active bath.22 The main difference of that result from our model
is, for oon/o0 Z 5 we find two minima in the hr̃e

2i versus Pe
curve instead of the single minimum in ref. 22, before the
asymptotic increase. The size variation is associated with the
effective persistence length of the filament (see Appendix-B).

3.2.2 Radius of gyration tensor. The size and shape of the
polymer configurations can be extracted by analyzing the
radius of gyration matrix:

S ¼ 1

N

P
i

ðxi � xcmÞ2
P
i

ðxi � xcmÞðyi � ycmÞ
P
i

ðxi � xcmÞðyi � ycmÞ
P
i

ðyi � ycmÞ2

0
@

1
A

(10)

where (xi,yi) denotes the position vector of the i-th bead, and
(xcm,ycm) denotes the center of mass coordinate of the instan-
taneous polymer configuration. The two eigenvalues ~l+ and ~l�
of S/hLi2 describe the instantaneous configuration of the poly-
mer as an elliptical shape, with ~l+ and ~l� denoting the square
of lengths along the semi-major and semi-minor axes whose
orientations are determined by the eigenvectors. A measure of
effective size of the polymer is given by Rg

2 = ~l+ + ~l�. The

difference between the eigenvalues denotes its shape Rs
2 = ~l+� ~l�,

with Rs
2 = 0 for a symmetric circular shape. In Fig. 7 we show

variations of the scaled size hR̃g
2i = hRg

2i/hRg
2iPe=0 and shape

hR̃s
2i = hRs

2i/hRs
2iPe=0 with Pe. As expected, the variation of hR̃g

2i
follows the same non-monotonic variation as the other measure
of size hr̃e

2i shown in Fig. 6. Remarkably, the shape of the
polymer hR̃s

2i follows the same qualitative dependence on Pe at
all oon/o0 ratios. See Appendix-C for probability distributions of
~l+, ~l�, R̃g

2 and R̃s
2.

3.3 Dynamics

Associated with the re-entrant phase transition, the conformational
dynamics displays a non-monotonic variation of the characteristic
time-scales with MP activity. In this section, we study the two-time
autocorrelation functions corresponding to the turning number,
the radius of gyration, and the polymer shape as defined above.
The overall orientation, described by the eigenvector corresponding
to the larger eigenvalue of the radius of gyration tensor, does not
involve conformational relaxation. As a result, its dynamics gets
faster monotonically with increasing activity.

3.3.1 Dynamics of the turning number. In Fig. 8 we show
the two-time autocorrelation function of the turning number,
CcN

(t) = hcN(t)cN(0)i/hcN
2(0)i at different Pe values keeping the

ratio oon/o0 = 1 constant. In using this definition it is noted
that hcN(t)i = 0 by symmetry; thus the fluctuation dcN = cN. For
Pe r 0.2 � 105, the chain stays in the open state corresponding
to the unimodal distribution in p(cN) with the maximum at
cN = 0. The stochastic relaxation within this state gives rise to
the single-exponential decay observed in Fig. 8. At the phase
coexistence, a new mechanism corresponding to the switching
between the open and spiral states can lead to a crossover of the
correlation to a second exponential decay. In Fig. 8 we observe
such a double exponential for Pe Z 0.4 � 105. The crossover
between the two exponentials gets imperceptibly shallow
between Pe = 105 and 2 � 105, as the overall faster dynamics
due to the larger Pe, makes the switching between states easier.
As we increase the Pe further, the increasing number of turns of
the polymer increases the distance between the open and spiral
peaks in the space of cN. Switching between states becomes

Fig. 6 (a) End-to-end distribution functions 2pp(r̃e) for Pe = P̃e � 105 with
P̃e values shown in the figure legend, at a fixed oon/o0 = 1. (b) Mean
squared end-to-end separation hr̃e

2i as a function of Pe for oon/o0 = 0.5
(,), 1 (n), 5 (&), 10 (}), 20 (J). Error bars are smaller than the symbol size.
The lines through the data are guides to the eye.

Fig. 7 Radius of gyration. (a) and (b) show the variation of size hRg
2i and

shape hRs
2iwith standard error as a function of Pe at different oon/o0 = 0.5

(brown ,), 1 (pink n) 5 (green &), 10 (blue }), 20 (red J) respectively.
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prohibitively expensive which makes the crossovers sharper
again.

3.3.2 Dynamics of size, shape, and orientation. The
dynamics of the size, shape, and overall orientation of the polymer
can be determined by analyzing the time-series of the eigenvalues
of the radius of gyration tensor, and the eigen-vector u corres-
ponding to the larger eigenvalue l+. We use the correlation
functions CRg

2(t) = hdRg
2(t)dRg

2(0)i/hdRg
4i, CRs

2(t) = hdRs
2(t)dRs

2(0)i/
hdRs

4i, and Cu(t) = hu(t)�u(0)i. The fluctuations dRg,s
2(t) = Rg,s

2(t) �
hRg,s

2(t)i. The correlation functions are plotted in Fig. 9. The size
and shape correlations display a double-exponential decay at
Pe Z 0.4 � 105, as in the turning number correlation function
in Fig. 8. This is because of the close relation between the size,
shape and the turning number, all of which depend on the
polymer conformation.

However, the dynamics of the overall orientation of the
polymer captured by u is not related to internal structural
relaxation. Thus, it shows single exponential decay of the corre-
lation, describing an orientational diffusion at Pe r 0.2 � 105.
Once the spirals are formed they start to rotate under the active
drive. As a result, the orientation u also rotates. This is captured
by the oscillations in Cu(t) at Pe \ 0.4 � 105. As can be easily
seen from Fig. 9(c), the frequency of rotation increases and the
amplitude of oscillation in Cu(t) decreases with increasing Pe.

3.3.3 Time scales. The correlation time tc is the time scale
at which the autocorrelation function touches zero for the first

time. In Fig. 10(a) we show the dependence of tc on Pe keeping
oon/o0 = 1. tc corresponding to the orientational correlation
function Cu(t) decreases monotonically with increasing Pe. This
can be understood by noticing that the overall orientational
dynamics does not involve internal conformational relaxation
of the polymer. It is thus controlled by the active time scale
D/v0

2 B 1/Pe2, and decreases monotonically with increasing Pe
(Fig. 10(a)).

On the other hand, the value of tc corresponding to CcN
(t),

CRg
2(t) and CRs

2(t) is controlled by two competing effects. The
enhanced activity at higher Pe is expected to make the
dynamics faster. On the other hand, as the system undergoes
phase transition, the slow switching between states can slow
down the overall dynamics. This competition leads to a non-
monotonic variation of tc with a maximum reached at Pe = 105

(Fig. 10(a)). The maximum in tc is associated with the
dominance of spirals in the dynamics. The correlation time tc

for a smoothened chain of r0/s = 0.75 shows a similar non-
monotonic variation (Appendix-D), however, with smaller tc

values than the chain with r0/s = 1.0 due to a reduced sliding
friction.

At this point, it is instructive to focus on tc corresponding to
CcN

(t). Note that at Pe = 105, where the maximum of tc = 1.3 �
105t is observed (Fig. 10(a)), the simulation results for the mean
dwell times at the open and spiral states are to = 1.3 � 104t
and ts = 2.5 � 104t, respectively. Using an assumption of a
dichotomous Markov process, they lead to an estimate of the
correlation time44 te = tots/(to + ts) E 104t o tc = 1.3 � 105t.
Such a difference is not unexpected as the actual dynamics
is not really a dichotomous process, and involves other
mechanisms, e.g., a gradual transition between the open and
spiral states.

In the following we attempt to obtain estimates of to and ts

using a relaxation dynamics corresponding to the effective free
energy (cN) in eqn (6). For notational simplicity, we replace cN

by c in the rest of this section. The non-conserved dynamics is
given by43

@c=@t ¼ �M @F=@c½ � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTeM

p
LðtÞ; (11)

where Te plays the role of an effective temperature, M the
mobility and L(t) is a univariate and uncorrelated Gaussian
random noise. The triple-minima of the free energy are at c = 0
and cm = �(u4/3u6)1/2[1 + (1 � 3u2u6/2u4

2)1/2]1/2, while the

Fig. 8 Two time autocorrelation function CcN
(t) = hcN(t)cN(0)i/hcN

2(0)i
evaluated at different Pe = P̃e � 105 with P̃e shown in the figure-legend
keeping the on–off ratio oon/o0 = 1 constant. Time t is expressed in the
unit of t.

Fig. 9 Two-time correlation functions of (a) Rg
2, (b) Rs

2, and (c) eigen-vector u at various Pe = P̃e � 105 with P̃e-values indicated in the legend, keeping
oon/o0 = 1 fixed. Time t is expressed in the unit of t.
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double maxima are at cM = �(u4/3u6)1/2[1 � (1 � 3u2u6/2u4
2)1/2]1/2.

Disregarding the mobility M in the absence of an independent
measure, the relaxation time scales at the minima of F, are
given by [q2F/qc2]c=0,cm

�1. The relaxation around c = 0 leads to
the inverse time-scale t1

�1 B o1 = u2, and that around c = cm

gives t2
�1 B o2 = u2 � (4u4

2/u6)[1 + (1 � 3u2u6/2u4
2)1/2] + (30u4

2/
9u6)[1 + (1 � 3u2u6/2u4

2)1/2]2. The expressions for t1 and t2 at
oon/o0 = 1 are plotted in Fig. 10(b). Further, we calculate the
Kramer’s escape times44 for barrier crossing: t3 from c = 0, and
t4 from c = cm. These are t3 B (o1|oM|)�1exp[(FcM) � F(0)],
and t4 B (o2|oM|)�1exp[(FcM) � (Fcm)], where oM = u2 �
(4u4

2/u6)[1 � (1 � 3u2u6/2u4
2)1/2] + (30u4

2/9u6)[1 � (1 � 3u2u6/
2u4

2)1/2]2 (see Fig. 10(b)). It is interesting to note that, among
these time scales, only t4, the time-scale determining the rate of
exiting the spiral state, has a non-monotonic variation with Pe,
and dominates the overall behavior. The above analysis allows
us to express the two effective dwell times as to = (t1 + t3) and
ts = (t2 + t4). The estimate te = tots/(to + ts) is plotted in
Fig. 10(b) with a multiplicative shift by 10 for better visibility.
This shows a non-monotonic variation, with a small maximum
at an intermediate Pe, a behavior that is qualitatively similar to
the dependence of correlation times corresponding to cN, Rg

2

and Rs
2 with Pe (Fig. 10(a)).

The main caveat to the above analysis is that eqn (11) obeys
the equilibrium fluctuation–dissipation relation, and is not
strictly valid as a description for active systems. Further, even
within an effective equilibrium interpretation, the Kramer’s
theory of barrier crossing is subject to modification when
interpreted for transition rates between multiple minima of a
free energy profile.

4 Discussion

We considered a detailed model of a motility assay consisting of
an extensible semiflexible filament driven by motor proteins (MP)
immobilized on a substrate. The numerical simulations showed a
reentrant first order transition from open chain to spirals with
changing activity. This transition is characterized by the presence
of metastable maxima in the probability distribution of the turn-
ing number. We obtained the phase-diagram in the Pe � oon/o0

plane, which clearly brings out the importance of attachment–
detachment kinematics of the MPs. At a constant oon/o0, the
polymer shows reentrant transition from open chain to spiral to
open chain with increasing Pe. With lowering of oon/o0, the phase
boundary shifts progressively to higher Pe, following a hyperbolic
relation derived from a local torque balance.

The reentrant transition is associated with non-monotonic
variations of the polymer size, shape and fluctuations in the
turning number hcN

2i with Pe. The data collapse of the hcN
2i

versus Pe curves at different oon/o0 led to a scaling relation,
which could approximately be captured by the torque balance
argument that describes the phase boundary. The coexistence
of open chain and spirals is preceded by the coexistence of
open and folded chains captured by the bimodality in the
distribution of end-to-end separation.

Our detailed analysis of the dynamics showed a double-
exponential decay in the autocorrelation function of size, shape
and turning number. The corresponding correlation times
showed a non-monotonic variation with Pe, with a maximum
due to the dominance of spirals. We developed an approximate
description of the correlation time in terms of a dichotomous
process between the open and spiral states. Using an effective
free energy description of the phase transition and non-
conserved relaxation dynamics, we obtained expressions for
the dwell times in the two states, giving an estimate of the
correlation time. This showed a non-monotonic variation with
Pe, albeit with relatively small variations. The two-time auto-
correlation of the polymer orientation, on the other hand,
showed a single exponential decay, with characteristic oscillations
associated with the rotation of spirals. The orientational dynamics
does not depend on the conformational relaxation, and the
corresponding correlation time decreases with activity as 1/Pe2.

Our detailed modeling of MPs allowed us to explicitly
identify dependence of the polymer properties on both the
active velocity of MPs v0, and the attachment–detachment
kinematics fixed by the ratio oon/o0. Together, they character-
ize the MP activity and depend on the ambient ATP concen-
tration. Our predictions are amenable to direct experimental
verifications in in vitro motility assays. For example, we can
estimate the correlation time for the turning number and
polymer extension of a filament driven by motor proteins.
The viscosity in the cell is around 100 times that of water
Zw = 0.001 pN s mm�2.2 Assuming a similar viscosity in the motility
assay, one gets Z = 100Zw = 0.1 pN s mm�2. The corresponding
viscous damping over a bond-length s is g = 3pZs. The activity of
MPs can be changed by changing the ambient ATP concentration.
For example, for kinesins, the active velocity v0 varies from
0.01 mm s�1 to 1 mm s�1, as the ATP concentration is increased
from 1 mM to 1 mM.26 This corresponds to Pe = gv0L2/kBTs =
3pZv0L2/kBT. At room temperature kBT = 4.2 � 10�3 pN mm. A
filament of length 10 mm experiences Pe E 2� 104. Using the unit
of time t = gL3/4skBT = 3pZL3/4kBT E 15.6 hours, the estimated
correlation time for the turning number, the radius of gyration
and end-to-end separation of the filament B0.1t translate to
about 1.5 hours. Our qualitative predictions for transitions from
open chain to spiral, and the non-monotonic variations of the

Fig. 10 (a) Variation of correlation time tc (in the unit of t) with Pe at
oon/o0 = 1, obtained for cN, Rg

2, Rs
2, and u. The brown solid line denotes

the scaling form 1/Pe2. (b) Time scales calculated at oon/o0 = 1 using the
expressions from the approximate non-conserved dynamics eqn (11).
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polymer size and shape with changing v0 can be tested by
controlling ATP concentration in the motility assays.

Conflicts of interest

There are no conflicts to declare.

Appendix
A Equilibrium persistence

The presence of WCA repulsion between non-bonded beads
changes the equilibrium properties of the chain with respect to
an ideal semiflexible polymer. At a short length scale it
increases the effective persistence length. This can be seen
from Fig. 11, where we plotted the tangent–tangent correlation
ht̂(s̃)�t̂(0)i with s̃ = s/L denoting relative contour-wise separation
between bonds. Smoothening of the potential profile along the
chain, reducing bond length r0 with respect to the WCA size s,
leads to enhanced repulsion between neighboring bonds. This
adds to the energy cost to transverse fluctuations, thereby
increasing the effective persistence length l̃p defined as ht̂(s̃)�
t̂(0)i E exp(�s̃/l̃p). The increase in l̃p with r0/s is shown in
Fig. 11. In fact, for longer chains, at large contour separations
with respect to the persistence length, the effect of self-
avoidance dominates over bending rigidity. It leads to the Flory
scaling hr2(s)iB s2n, which corresponds to a power-law decay in
the correlation ht̂(s)�t̂(0)i B s�(2 � 2n) at long contour separa-
tions. In an intermediate s̃, the correlation function crosses
over from exponential to power-law decay.

B Effective persistence length

The effective persistence length can be quantified in terms of
the correlation function between local tangents ht̂(s)�t̂(0)i at
contour positions separated by s. For the worm-like-chain the
correlation shows a single-exponential decay ht̂(s)�t̂(0)i = exp(�s/l)
defining the persistence length l. The semiflexible polymer under

the motility assay drive shows non-trivial tangent correlations
(Fig. 12(a)). The oscillations in the decaying correlation at higher
Pe is associated with the formation of the spiral configurations.
However, the initial decay in correlation can be fitted to a single
exponential form exp(�s/lp) to capture the effective persistence
length lp. In Fig. 12(a) the contour lengths s are expressed as
s̃ = s/hLi, where hLi is the mean chain-length. The scaled effective
persistence lengths l̃p = lp/hLi are plotted as a function of Pe, at
fixed oon/o0 ratios in Fig. 12(b). The variation of l̃p shows a
non-monotonic change with Pe, and follows the variation of the
mean squared end-to-end separation hr̃e

2i plotted in Fig. 6(b).

C Radius of gyration: probability distributions

Here we show the probability distributions of the eigenvalues of
the radius of gyration matrix, p(l�). In Fig. 13(a) and (b) we
show these distribution functions evaluated for various Pe

Fig. 11 Increase in the equilibrium persistence length due to the
reduction of bond length r0 with respect to the WCA length scale s.
Tangent–tangent correlation functions ht̂(s̃)�t̂(0)i as a function of s̃ = s/L are
shown at three values of r0/s = 1, 0.75, 0.5. The lines denote the
exponential decay of correlation as exp(�s̃/l̃p), with the corresponding
persistence length l̃p denoted in the figure legend. Plots for r0/s = 0.75, 0.5
are shifted upwards by 0.2 and 0.4 for better visibility.

Fig. 12 Persistence length. (a) Tangent–tangent correlation function for
Pe � 10�5 = 0(&), 0.99(J), 1.98(n) and oon/o0 = 1. The points denote the
simulation results, and the solid lines represent the fitting functions
exp(�s̃/l̃p). (b) Variation of the effective persistence length l̃p with Pe at
oon/o0 = 0.5(,), 1(n), 5(&), 10(}), 20(J). The lines through data are guides
to the eye. At equilibrium, the chain has a persistence length l̃p E 0.3, close
to the values at Pe = 0.

Fig. 13 Probability distributions of the eignevalues (a) ~l+, and (b) ~l�, (c)
size R̃g

2, and (d) shape R̃s
2 are shown. All the distribution functions are

obtained at oon/o0 = 1, and the different graphs in (a)–(d) correspond to
the Pe = P̃e � 105 with P̃e-values indicated in the legend of (a).
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values and a fixed turnover oon/o0 = 1. Clearly, at the onset of
instability towards formation of spirals both the distributions
p(~l�) start to show the emergence of a very sharp delta-function
like peak. This corresponds to the typical size and shape of the
configurations forming the spiral. This feature is further quan-
tified in the distribution functions of the relative size and shape
variables R̃g

2 and R̃s
2 shown in Fig. 13(c) and (d).

D Correlation time in smoothened polymers

Here we compute the correlation function of the turning
number CcN

(t) = hcN(t)cN(0)i/hcN
2(0)i for the smoothened chain

with r0/s = 0.75 (Fig. 14) at different values of Pe keeping the
attachment–detachment ratio oon/o0 = 1 fixed. To keep the
chain length unchanged with respect to the chain with r0/s =
1.0, we use N = 85 beads. The correlation times tc are deter-
mined by identifying where CcN

(t) touches zero. The plot of
correlation time in the inset of Fig. 14 shows a non-monotonic
variation similar to Fig. 10(a), while the actual value of tc

remains smaller than the chain with r0/s = 1.0.
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