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After extensive investigation of the Floquet second-order topological insulator (FSOTI) in two dimensions,
here we propose two driving schemes to systematically engineer the hierarchy of the Floquet first-order
topological insulator, the FSOTI, and the Floquet third-order topological insulator in three dimensions. Our
driving protocols allow these Floquet phases to showcase regular 0, anomalous π , and hybrid 0-π -modes in a
unified phase diagram, obtained for both two- and three-dimensional (2D and 3D) systems, while starting from
the lower-order topological or nontopological phases. Both the step drive and the mass kick protocols exhibit
the analogous structure of the evolution operator around the high symmetry points. These eventually enable us
to understand the Floquet phase diagrams analytically and the Floquet higher-order modes numerically based
on finite-size systems. The number of 0 and π modes can be tuned irrespective of the frequency in the step
drive scheme, while we observe frequency-driven topological phase transitions for the mass kick protocol. We
topologically characterize some of these higher-order Floquet phases (harboring either 0 or anomalous π mode)
by a suitable topological invariant in 2D and 3D cases.
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I. INTRODUCTION

With the discovery of the quantum Hall effect [1], topo-
logical electronic materials have gained an immense amount
of attention for their gapless boundary modes as caused
by the nontrivial winding of the ground-state wave func-
tion of gapped bulk systems [2]. Instead of applying an
external magnetic field, the quantum anomalous Hall effect
opens up a new avenue of research to be explored in the
future [3]. The introduction of spin-orbit coupling further
enriches the research activity in this field when time-reversal
symmetry (TRS) preserves the quantum spin Hall insulator
[4–6], thus giving rise to the famous idea of a topologi-
cal insulator (TI) [7–9]. Consequently, the concept of a TI
has been contextualized in several real materials [10–12],
paving the way for the realization of bulk-boundary corre-
spondence where gapless boundary modes are the outcome
of the topological band structure of bulk crystal. These can
be exemplified for the first-order TI. Very recently, the con-
cept of higher-order topological insulators (HOTIs) [13–25]
received an enormous amount of attention in modern quantum
condensed-matter research. The bulk-boundary correspon-
dence is generalized such that a d-dimensional nth-order
HOTI is portrayed by the emergence of (d − n)-dimensional
boundary modes. In particular, a two-dimensional (three-
dimensional) [2D (3D)] second-order topological insulator
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(SOTI) hosts zero-dimensional (one-dimensional) [0D (1D)]
corner (hinge) modes, whereas a 3D third-order topological
insulator (TOTI) hosts 0D corner modes.

Moving our attention to systems out of equilibrium, we
emphasize that periodically driven quantum systems [26,27]
exhibit intriguing properties as compared to their static coun-
terparts, such as dynamical localization [28–30], many-body
localization [31–33], Floquet time crystals [34,35], higher
harmonic generation [36,37], etc. Intriguingly, nondissipative
dynamical boundary modes, due to their time translational
symmetry, can be contrived in a Floquet topological insulator
[38–43] and a Floquet topological superconductor [44–47],
which have recently been the prime focus of interest. The non-
trivial winding of the wave function for these driven systems
in the time direction further allows one to have anomalous
boundary modes, namely π modes, at finite energy. The prodi-
gious experimental development of Floquet systems based
on a solid-state setup [48], acoustic systems [49,50], pho-
tonic platforms [51,52], etc., adds further merit to this field
with regard to their realization and possible device appli-
cation. Interestingly, Floquet engineering also enables one
to achieve Floquet HOTI (FHOTI) and HOT superconductor
phases starting from a lower-order or nontopological phase by
suitably tuning appropriate driving protocols [53–68].

Given the above background on static and driven topolog-
ical systems, we would like to emphasize that the systematic
generation of anomalous HOTI phases (anchoring both reg-
ular 0 and anomalous π mode), in both 2D and 3D, has not
been explored so far to the best of our knowledge, although a
few attempts have been made by activating the tight-binding
piecewise in a steplike manner to show the emergence of
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anomalous π corner modes in two dimensions [57,63,64]. We
note that the FHOTI states are not necessarily formulated from
the underlying lower-order topological state. On the other
hand, very recently regular static zero-energy corner and gap-
less hinge modes have been shown in a hierarchical manner
starting from the lower-order topological states [53,61,69].
Therefore, merging the above two aspects together, an imme-
diate question arises regarding how to generate the flow of
anomalous first-order topological insulator (FOTI) and HOTI
phases starting from a trivial or static topological phase in
both two and three dimensions. We refer to these phases as
Floquet FOTI (FFOTI), Floquet SOTI (FSOTI), and Floquet
TOTI (FTOTI).

In this article, we consider a steplike driving scheme, in-
corporating appropriate Wilson-Dirac mass terms in a simple
tight-binding model to explore the appearance of the dynam-
ical FFOTI as well as all the FHOTI phases in two and three
dimensions. Interestingly, we find that the FFOTI phase dia-
grams, hosting 0, π , 0-π edge (surface) modes (see Figs. 1
and 3), are directly upgraded into FSOTI (FSOTI and FTOTI)
phase diagrams in 2D (3D) conceiving 0, π , 0-π corner (hinge
and corner) modes as shown in Fig. 2 (Figs. 4 and 5). Without
restricting ourselves to the above particular driving scheme,
we also exemplify the identical findings by considering a mass
kick protocol (see Fig. 6), where we find frequency-driven
topological phase transitions in addition to the parameter-
driven phase transitions. We analytically analyze the possible
reason behind such systematic formulation of the FFOTI and
the FHOTI phases from the Floquet operator that can signal
the nonequilibrium phase diagram unanimously. We charac-
terize some of these phases by an appropriate topological
invariant, such as tangential polarization and octupolar mo-
ments (see Fig. 7). Furthermore, we illustrate the mosaic
phase diagram, consisting of phases with different numbers of
0 and π modes, as a function of parameters associated with the
driving (see Fig. 8). We discuss several ancillary aspects of our
analysis, such as the high-frequency limit, the consequences
of laser driving, the effect of disorder etc., to highlight the
importance of our findings. We believe that our work is exper-
imentally viable due to the recent advancements in solid-state
materials [70,71], mechanics [72], acoustics [73], microwaves
[74], photonics [75], electrical circuits [76], etc.

The remainder of the paper is structured as follows. In
Sec. II, we introduce our two types of driving protocols
along with the model Hamiltonians. Section III is devoted
to a discussion of the main results of the paper, where we
present the anomalous dynamical modes both in two and three
dimensions for the FFOTI and the FHOTIs. In Sec. IV, we
discuss the topological characterization of the FHOTI phases.
After that, we discuss other possible approaches to engineer
HOTI phases and their stabilization against disorder and a few
related aspects in Sec. V. We finally summarize and conclude
our paper in Sec. VI.

II. DRIVING PROTOCOLS

Here we enlist our driving protocols in the form of
step drive and periodic mass kick for both two and three
dimensions.

A. Step drive

The step drive consists of two Hamiltonians that one can
employ piecewise within the time period to generate the
FFOTI and the FHOTI phases. The driving scheme is explic-
itly demonstrated below,

HdD = J ′
1h1,dD(k), t ∈

[
0,

T

2

]
,

= J ′
2h2,dD(k), t ∈

(
T

2
, T

]
, (1)

where J ′
1 and J ′

2 carry the dimension of energy. We work
with the natural unit, which allows us to set h̄ = c = 1. The
drive, however, is controlled by the dimensionless parameters
(J1, J2) = (J ′

1T, J ′
2T ), where T is the period of the drive.

This is related to the driving frequency � as T = 2π/�.
Here, J ′

i hi,dD(k) represents the Hamiltonian of the system
at the ith step in d-dimension. In particular, to generate
a 2D topological phase [53], we consider h1,2D(k) = σz

and h2,2D(k) = (cos kx + cos ky)σz + sin kxσxsz + sin kyσy +
α(cos kx − cos ky)σxsx, whereas in three dimensions [61] we
envisage h1,3D(k) = μxσz and h2,3D(k) = (cos kx + cos ky +
cos kz )μxσz + sin kxμxσxsx + sin kyμxσxsy + sin kzμxσxsz +
α(cos kx − cos ky)μxσy + β(2 cos kz − cos kx − cos ky)μz.
Here, α and β are dimensionless parameters, which we
tune to generate the cascade of FFOTI, FSOTI, and FTOTI
phases. The three Pauli matrices μ, σ, and s act on sublattice
(A, B), orbital (a, b), and spin (↑,↓) degrees of freedom,
respectively.

Note that the first (second) step Hamiltonian J ′
1h1,dD(k)

[J ′
2h2,dD(k)] is composed of on-site (hopping) terms only.

We sometimes refer to h1,dD(k) as h1,dD due to its on-site
nature. The α and β independent cosine terms cos kx,y,z arise
due to the nearest-neighbor hopping while the spin-orbit cou-
pling is represented by the sine terms sin kx,y,z. The on-site
mass term of strength J ′

1 becomes very important for the
topological phase transition that we discuss below. The first
step Hamiltonian thus preserves the necessary symmetries,
while the second step Hamiltonian is found to be respon-
sible for breaking certain symmetries. The latter becomes
very useful to achieve the FHOTI phases. For α = β = 0,
hi,dD(k) respects TRS generated by T = isyK, where K is the
complex-conjugation operator. However, when α �= 0, which
is the corresponding term, h2,dD(k) breaks both TRS and four-
fold rotation (C4) symmetry while preserving the combined
C4T symmetry. Importantly, hi,dD(k) respects unitary chiral
C = σxsy (= μyσ0s0) and antiunitary particle-hole symmetry
P = σxszK (= μxσysyK) for two (three) dimensions such that
Chi,dD(k)C−1 = −hi,dD(k) and Phi,dD(k)P−1 = −hi,dD(−k)
[53,61]. It should be noted that the term associated with α

further breaks the mirror symmetry.
Before translating to the dynamical limit, we would like to

point out the various static phases accessible to our model, de-
pending upon the values of different parameters of the system.
One can contemplate the following Hamiltonians in two and
three dimensions as

HStatic
2D (k) = J ′

1h1,2D(k) + J ′
2h2,2D(k), (2)

HStatic
3D (k) = J ′

1h1,3D(k) + J ′
2h2,3D(k), (3)
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where HStatic
2D (k) represents the Hamiltonian of a 2D quan-

tum spin Hall insulator (QSHI) with propagating 1D helical
edge states, when α = 0 and 0 < |J ′

1| < 2|J ′
2| [7,10]. How-

ever, for any nonzero value of α, the edge states of the
QSHI are gapped out by the corresponding Wilson-Dirac mass
term proportional to α in such a way that two consecutive
edges incorporate opposite mass terms. Using the generalized
Jackiw-Rebbi index theorem [77], one can show the emer-
gence of zero modes at the corners of the system, i.e., the
system resides in the SOTI phase [17,53].

In three dimensions, we have access to an additional HOT
phase, namely TOTI, for α, β �= 0 as compared to the 2D case
with α �= 0 only, where one can reach the SOTI. We point
out this hierarchy one by one. In the absence of the Wilson-
Dirac masses, i.e., α = β = 0, HStatic

3D (k) hosts gapless 2D
surface states in the strong TI phase provided 0 < |J ′

1| < 3|J ′
2|

[11,61,69]. In addition to the 3D TI phase, if we allow α

to be nonzero, the surface states of the underlying TI are
gapped out by the corresponding term, and we procure gapless
states along the 1D hinge of the system in the z-direction
[13,17,61,69]. This is the signature of a 3D SOTI. On the
other hand, in the presence of nonzero values of α and β, the
first-order 3D TI phase transmutes into a 3D TOTI, harboring
0D corner modes [13,61,69].

B. Periodic mass kick

In our periodic kick protocol, we consider the Hamiltonian
HdD in d-dimension between two successive kicks. After-
wards, we introduce the driving protocol in the form of an
on-site mass kick as

m0(t ) = m h1,dD

∞∑
r=1

δ(t − rT ), (4)

where m denotes the strength of the kicking parameter, t
denotes time, and T symbolizes the time period of the drive.
Following the periodic kick, we can write down the exact Flo-

quet operator UdD(k, T ) using the time-ordered (TO) notation
as

UdD(k, T ) = TO exp

[
−i

∫ T

0
dt[HdD(k) + m0(t )]

]
= exp ( − iHdD(k)T ) exp(−im h1,dD). (5)

We choose H2D(k) = J ′h2,2D(k) in two dimensions and
H3D(k) = J ′h2,3D(k) in three dimensions. Also, h1,2D h1,3D

were defined earlier. Here, J ′ carries the dimension of energy.
However we use the dimensionless parameter J = J ′T along
with m to control the drive. Similar to Eqs. (2) and (3), one
can obtain the analogous static Hamiltonian for this case as
HStatic

dD (k) = m h1,dD + J ′h2,dD(k). Note that one can achieve
the mass kick [Eq. (4)] protocol from the limiting case of the
step drive protocol [Eq. (1)] with infinitesimal duration of the
first step Hamiltonian J ′

1h1,dD.

III. ANOMALOUS DYNAMICAL MODES

Here we present our key findings regarding the generation
of dynamical FHOTI phases in two and three dimensions,
employing the step drive and periodic mass kick protocols.

A. Step drive

Within the step drive protocol, we can generate the jets of
FFOTI, FSOTI, and FTOTI by tuning some specific parame-
ters, which we discuss in the upcoming subsections in detail.

1. Two dimensions

To begin with two dimensions, following step drive pro-
tocol, we can write down the full Floquet evolution operator
U2D(k, T ) after one full period T as

U2D(k, T ) = exp
(
−i

J2

2
h2,2D(k)

)
exp

(
−i

J1

2
h1,2D(k)

)
, (6)

where we can express U2D(k, T ) as U2D(k, T ) = f2D(k)I +
ig2D(k), such that

f2D(k) = cos
(
γ2D(k)

J1

2

)
cos

(
λ2D(k)

J2

2

)
− sin

(
γ2D(k)

J1

2

)
sin

(
λ2D(k)

J2

2

)
χ2D(k), (7)

g2D(k) = − 1

γ2D(k)λ2D(k)
sin

(
γ2D(k)

J1

2

)
sin

(
λ2D(k)

J2

2

)
η2D(k) − sin

(
γ2D(k)

J1

2

)
cos

(
λ2D(k)

J2

2

)h1,2D(k)

γ2D(k)

− cos
(
γ2D(k)

J1

2

)
sin

(
λ2D(k)

J2

2

)h2,2D(k)

λ2D(k)
. (8)

Here, we have suppressed the implicit T dependence on
f2D(k) and g2D(k). We have defined γ2D(k) = |h1,2D(k)|,
λ2D(k) = |h2,2D(k)|, χ2D(k) = cos kx+cos ky

γ2D(k)λ2D(k) , and η2D(k) =
sin kxσysz − sin kyσx + α(cos kx − cos ky)σysx. From the
eigenvalue equation for U2D(k, T ), U2D(k, T ) |�〉 =
eiE (k) |�〉, one obtains the condition

cos E (k) = f2D(k), (9)

with each band being twofold-degenerate. Now, the band
gap closes at k = k∗ = (0, 0) or (π, π ) for f2D(k∗) = ±1

such that E (k∗) = nπ , with n = 0, 1, 2, 3, . . . being an in-
teger. The interesting point to note here is that we can
cast f2D(k) in terms of a single cosine function such
as f2D(k∗) = cos (γ2D(k∗) J1

2 ± λ2D(k∗) J2
2 ). Furthermore, the

structure of the χ2D(k∗) term here serves as an essential in-
gredient to continue with the above analysis. To be precise, at
these momentum points, γ2D(k∗), λ2D(k∗), and χ2D(k∗) take
the following values: γ2D(0, 0) = γ2D(π, π ) = 1, λ2D(0, 0) =
λ2D(π, π ) = 2, and χ2D(0, 0) = −χ2D(π, π ) = 1. These spe-
cial momentum modes continue to play a pivotal role for
dynamics in addition to the static counterpart as given in
Eqs. (2) and (3). This enables us to write the right-hand side
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FIG. 1. (a) Phase diagram is depicted in the J1-J2 plane for
2D FFOTI, which is guided by Eq. (11). (b) Quasienergy spec-
trum for a finite system and as a function of the state index
m is depicted when the system is in the phase R4. One can
clearly identify modes close to quasienergies 0 and ±π . (c) The
LDOS is shown for a finite-size system corresponding to quasiener-
gies Em = 0, ±π in R4. The quasienergy spectra Em, considering
slab geometry, for R1, R2, R3, and R4 are shown in panels
(d), (e), (f), and (g), respectively. We choose the parameters as
(J1, 2J2) = [( π

4 , π

2 ), ( π

2 , π

4 ), ( 3π

4 , π

2 ), ( π

2 , 3π

4 )] for R1, R2, R3, and
R4, respectively.

(RHS) of Eq. (7) in a compact form as

cos
(J1

2
± J2

)
= cos nπ, (10)

where n is an integer. From Eq. (10), we obtain the gap closing
conditions in terms of the dimensionless parameters J1 and J2

as

|J2| = |J1|
2

+ nπ. (11)

Here, Eq. (11) signifies the topological phase boundaries
between various dynamic phases, as depicted in Figs. 1(a)
and 2(a). The phase boundaries divide the phase diagram into
four parts: region 1 (R1) with 0 mode, region 2 (R2) with no
modes, region 3 (R3) with π mode, and region 4 (R4) hosting
both 0 and π modes. Interestingly, the phase boundaries re-
main the same for both FFOTI and FSOTI due to the absence
of any α-dependent term in Eq. (11). Instead of considering
a two step drive, one can also think about a three step drive
protocol as discussed in Ref. [57] and end up obtaining a
relation akin to Eq. (11). The underlying reason for this can
be attributed to the fact that the structure of f2D(k∗) remains
unaltered in both cases. With the help of Eqs. (6), (7), and (8),
we can write the Floquet effective Hamiltonian H2D,Flq as

H2D,Flq = − ε2D(k)

sin [ε2D(k)T ]
g2D(k), (12)

where ε2D(k) = 1
T cos−1[ f2D(k)].

Note that the ladder of FHOTI including FFOTI can
be engineered by selectively incorporating the Wilson-Dirac
masses in h2,2D(k). To be precise, α = 0 (α �= 0) in h2,2D(k)
leads to the FFOTI (FSOTI) phases. After obtaining an analyt-
ical understanding of the emergence of the FFOTI and FSOTI
phases, we further support our findings by numerical analysis

FIG. 2. (a) Phase diagram is demonstrated in the J1-J2 plane for
2D FSOTI. (b) LDOS is shown for a finite-size system corresponding
to quasienergies Em = 0, ±π in R4. (c) Quasienergy spectrum Em,
considering slab geometry for our system, is depicted as a function
of ky for R4. One can observe that both the 0 and π edge modes are
gapped out due to inclusion of the Wilson-Dirac mass term α. The
quasienergy spectra Em for the finite-size system, corresponding to
R1, R2, R3, and R4, are presented as a function of the state index m in
panels (d), (e), (f), and (g), respectively. We use the same parameters
as mentioned in Fig. 1.

for finite-size systems (see the text for discussion of Case 1
and Case 2).

Case 1: FFOTI. As mentioned earlier, in order to obtain
the FFOTI phase, we set α = 0. The FFOTI is characterized
by the presence of gapless edge modes at its 1D boundary. To
uncover the subsistence of gapless dispersive edge modes, we
resort to slab geometry, i.e., the periodic boundary condition
(PBC) along one direction (say y) and the open boundary con-
dition (OBC) in the other direction (say x). We numerically
diagonalize the Floquet operator U2D(ky, T ) and depict the
quasienergy spectrum as a function of ky for regions R1, R2,
R3, and R4 in Figs. 1(d), 1(e), 1(f), and 1(g), respectively.
It is evident that the gapless modes appear at ky = 0, π as
discussed earlier in the mathematical analysis. With reference
to the phase diagram, Fig. 1(a), obtained analytically from
Eq. (11) and verified numerically from U2D(ky, T ) [Eq. (6)],
one can observe only 0 mode, no mode, only π mode, and
both 0 and π modes in R1, R2, R3, and R4, respectively. The
real-space quasienergy spectrum associated with R4 is de-
picted in Fig. 1(b). There one can identify the FFOTI modes at
both Em = 0 and Em = ±π . As discussed above, one expects
to notice FFOTI modes separately at Em = 0 (Em = ±π ) for
R1 (R3) and no modes either at Em = 0 or Em = π for R2,
although we prefer not to show them here. The local density
of states (LDOS) for a system with OBC in both directions is
illustrated in Fig. 1(c) for quasistates with Em = 0, ±π

(within numerical accuracy) corresponding to R4. The LDOS
remains unaltered for quasistates corresponding to Em = 0
(R1) and Em = ±π (R3). These Em = ±π (at frequency ±
�/2) gapless modes refer to the dynamical ones as re-
ported earlier for other systems with different driving
schemes [78,79].

Case 2: FSOTI. Turning our focus to the 2D FSOTI phase,
which can be obtained by considering α �= 0, the correspond-
ing phase diagram turns out to be unaltered as depicted in
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Fig. 2(a). To probe the footprints of FSOTI via the LDOS, we
resort to OBC in both directions. We show the LDOS for qua-
sistates with Em = 0, ±π in Fig. 2(b). It is evident that corner
localized modes appear at quasienergies Em = 0, ±π . The
quasienergy spectra are shown in Figs. 2(d), 2(e) 2(f), and 2(g)
for the phase R1, R2, R3, and R4, respectively. As mentioned
earlier, when we set α to be nonzero, the 1D edge modes of
FFOTI should be gapped out by the Wilson-Dirac mass term
(cos kx − cos ky), and the corresponding 0, π modes appear at
the corners of the system. This is clearly visible for the present
case while comparing Fig. 1(g) with Fig. 2(c), where we
depict the gapped edge mode in R4 employing slab geometry.
Note that there exist four (two) quasistates at quasienergy
Em = 0, (±π ) for the 2D FSOTI phase.

2. Three dimensions

In three dimensions, we comprehensively unveil how to
systematically generate the cascade of FFOTI, FSOTI, and
FTOTI phases by suitably tuning the Wilson-Dirac mass per-
turbations. In three dimensions, the Floquet evolution operator
for the step drive protocol reads

U3D(k, T ) = exp
(
−i

J2

2
h2,3D(k)

)
exp

(
−i

J1

2
h1,3D(k)

)
. (13)

Similar to the 2D case, one can find the Floquet evolution
operator U3D(k, T ) as U3D(k, T ) = f3D(k)I + ig3D(k), with

f3D(k) = cos
(
γ3D(k)

J1

2

)
cos

(
λ3D(k)

J2

2

)
− sin

(
γ3D(k)

J1

2

)
sin

(
λ3D(k)

J2

2

)
χ3D(k), (14)

g3D(k) = − 1

γ3D(k)λ3D(k)
η3D(k) sin

(
γ3D(k)

J1

2

)
sin

(
λ3D(k)

J2

2

)
− sin

(
γ3D(k)

J1

2

)
cos

(
λ3D(k)

J2

2

)h1,3D(k)

γ3D(k)

− cos
(
γ3D(k)

J1

2

)
sin

(
λ3D(k)

J2

2

)h2,3D(k)

λ3D(k)
, (15)

where γ3D(k) = |h1,3D(k)|, λ3D(k) = |h2,3D(k)|, χ3D(k) =
cos kx+cos ky+cos kz

γ3D(k)λ3D(k) , and η3D(k) = sin kxσysx + sin kyσysy +
sin kzσysz − α(cos kx − cos ky)σx − β(2 cos kz − cos kx −
cos ky)μyσz. From the eigenvalue equation of U3D(k, T ),
U3D(k, T ) |�〉 = eiE (k) |�〉, one obtains

cos E (k) = f3D(k), (16)

with each band being fourfold-degenerate. Now, the band
gap closes at k = k∗ = (0, 0, 0) or (π, π, π ) when f3D(k) =
±1. At these points, γ3D(k), λ3D(k), and χ3D(k) take the
following values: γ (0, 0, 0) = γ (π, π, π ) = 1, λ(0, 0, 0) =
λ(π, π, π ) = 3, and χ (0, 0, 0) = −χ (π, π, π ) = 1. This en-
ables us to write the right-hand side of Eq. (14), following a
similar line of arguments discussed for the 2D case, as

cos

(
J1

2
± 3J2

2

)
= cos nπ. (17)

From the above relation [Eq. (17)], we obtain the gap closing
relations in terms of J1 and J2 as

3|J2|
2

= |J1|
2

+ nπ, (18)

where n is an integer. Note that Eq. (18) serves the purpose of
a topological phase boundary in the 3D case. It is worth men-
tioning here that the phase diagrams in the J1-J2 plane that can
obtain different types of first- and higher-order modes remain
the same for FFOTI, FSOTI, and FTOTI [see Figs. 3(a), 4(a),
and 5(a), respectively]. This can be attributed to the fact that
gap-closing conditions are independent of α and β. This is a
generic feature of this particular driving protocol. However,
the special structures of χ3D(k∗) and f3D(k∗) are held respon-
sible for the above robust nature of these phase diagrams,
although, depending upon the choice of the driving scheme,
one can obtain the FHOTI phase diagram as a function of mass

terms α and β. Using Eqs. (13), (14), and (15), we can write
the Floquet effective Hamiltonian H3D,Flq as

H3D,Flq = − ε3D(k)

sin [ε3D(k)T ]
g3D(k), (19)

where ε3D(k) = 1
T cos−1[ f3D(k)].

Similar to the earlier case for the 2D system, below we
explore systematically the emergence of FFOTI and FHOTI
phases by numerically diagonalizing the Floquet operator
[Eq. (13)] implementing appropriate finite geometries.

FIG. 3. (a) Phase diagram is depicted in the J1-J2 plane for
3D FFOTI. (b) Quasienergy spectrum Em for a finite-size sys-
tem is shown as a function of the state index m when the
system is in phase R4. (c) LDOS is depicted for a finite-size
system corresponding to quasienergies Em = 0, ±π for R4. The
quasienergy spectra Em considering slab geometry, along the � −
X − S − Y − � points, for R1, R2, R3, and R4, are shown in pan-
els (d), (e), (f), and (g), respectively. The chosen parameters are
(J1, 3J2) = [( π

4 , π

2 ), ( π

2 , π

4 ), ( 3π

4 , π

2 ), ( π

2 , 3π

4 )] for R1, R2, R3, and
R4, respectively.
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FIG. 4. (a) We demonstrate the phase diagram in the J1-J2 plane
for 3D FSOTI. (b) Quasienergy spectrum Em for a finite system is
shown as a function of the state index m for R4. (c) The correspond-
ing LDOS is depicted considering quasistates with Em = 0, ±π in
R4. The quasienergy spectra Em in rod geometry along kz, corre-
sponding to R1, R2, R3, and R4, are shown in panels (d), (e), (f),
and (g), respectively. The parameters are chosen to be the same as in
Fig. 3.

Case 1: FFOTI. To obtain the FFOTI phase in three di-
mensions, we set both α = 0 and β = 0. The FFOTI phase is
characterized by the appearance of gapless 2D surface states.
The quasienergy spectra for a finite-size system with OBC
along the x-, y-, and z-directions, residing in R4, is shown in
Fig. 3(b) as a function of the state index m. We depict the
signature of the surface states in the LDOS corresponding to
quasistates with Em = 0, ±π for R4 in Fig. 3(c). For a better
understanding of the nature of the surface states, we employ
slab geometry by considering OBC along one direction (say,
the z-direction) while the remaining two directions obey PBC
(say, the x- and y-directions). We depict the gapless surface
states along � − X − S − Y − � points for R1, R2, R3, and
R4 in Figs. 3(d), 3(e) 3(f), and 3(g), respectively. Here, � =
(0, 0), X = (π, 0), S = (π, π ), Y = (0, π ).

Case 2: FSOTI. To realize the FSOTI phase, we set α to
a nonzero value while keeping β = 0. We first explore the
quasienergy spectra under OBC in all directions as shown
in Fig. 4(b), where the existence of both 0 and π modes in
R4 is clearly visible as a function of the state index m. We
further illustrate the LDOS corresponding to quasistates with
Em = 0, ±π for R4 in Fig. 4(c). One can notice that the mode
is populated throughout the hinge along the z-direction of the
system. To exhibit the dispersive nature of the gapless hinge
modes, we use rod geometry, i.e., considering OBC in two
directions (x- and y-directions) and PBC in the remaining di-
rection (z-direction). The corresponding quasienergy spectra
for this system are shown in the rod geometry for R1, R2, R3,
and R4 in Figs. 4(d), 4(e), 4(f), and 4(g), respectively. These
numerical findings can be analytically understood as well
from the bulk. The first Wilson-Dirac mass term proportional
to (cos kx − cos ky) is able to gap out the surface modes over
all three xy, yz, and zx surfaces except along x = ±y for any
value of z [61].

Case 3: FTOTI. The FTOTI phase can further be obtained
when both the mass terms α and β are nonzero. The cor-
responding phase diagram in the J1-J2 plane is shown in
Fig. 5(a). In Fig. 5(b), we further depict the signature of corner

FIG. 5. (a) We illustrate the phase diagram in the J1-J2 plane for
3D FTOTI. (b) Corner localized modes corresponding to quasiener-
gies Em = 0, ±π are shown via LDOS for a finite-size system in
R4. (c) Quasienergy spectrum Em for the system in rod geometry is
depicted as a function of kz, manifesting in the hinge modes (both 0
and ±π ) being gapped out. The quasienergy spectra Em for a finite-
size system and as a function of the state index m, corresponding
to R1, R2, R3, and R4, are shown in panels (d), (e), (f), and (g),
respectively. We choose the same parameter values as mentioned in
Fig. 3.

modes at Em = ±π for R4 via the LDOS spectrum. This
has been computed considering OBC in all directions. In the
FTOTI phase, one obtains 0 or π mode only at the corners of
the system, while both surface and hinge modes are gapped
out. We show the quasienergy spectrum for this system, em-
ploying rod geometry (OBC along the x and y-directions, PBC
along the z-direction), in Fig. 5(c) (corresponding to R4). It is
evident that both 0 and π hinge modes are gapped out [see
Fig. 5(c)]. Therefore, this is in contrast to the FSOTI phase,
as shown in Fig. 4(g). The second Wilson-Dirac mass term
β(2 cos kz − cos kx − cos ky) gaps out the hinge mode except
at the body diagonal position ±z = ±y = ±x where corner
modes appear [61]. The presence of dynamical corner modes
can be better understood by exploring the quasienergy spectra
for a system obeying OBC in all three directions. We show
the corresponding quasienergy spectra as a function of the
state index m, employing OBC for R1, R2, R3, and R4 in
Figs. 5(d), 5(e), 5(f), and 5(g), respectively. Note that there
exist eight (four) quasistates at Em = 0, (±π ) for the FTOTI
phase, which contribute to the corner localized LDOS.

FIG. 6. (a) Phase diagram for the kick driving protocol is de-
picted in the m-J plane for a 2D FFOTI/FSOTI. (b) Quasienergy
spectrum Em is shown as a function of the driving time pe-
riod T . This exhibits the 0, ±π modes. We choose (m, J ′) =
(0.4π, 0.5π ). (c) The corresponding phase diagram for a 3D
FFOTI/FSOTI/FTOTI is illustrated in the m-J plane.
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B. Periodic mass kick

After extensive discussion on the hierarchy of FHOTI
phases starting from FFOTI phases (under the step drive

scheme), we now proceed to analyze our findings for the mass
kick protocol as given in Eq. (4). In the periodic mass kick
formalism, the Floquet operator UdD(k, T ) can be cast in the
form UdD(k, T ) = fdD(k)I + igdD(k), with

f2D(k) = cos [γ2D(k)m] cos [λ2D(k)J] − sin [γ2D(k)m] sin [λ2D(k)J]χ2D(k), (20)

g2D(k) = − 1

γ2D(k)λ2D(k)
η2D(k) sin [γ2D(k)m] sin [λ2D(k)J] − sin [γ2D(k)m] cos [λ2D(k)J]

h1,2D(k)

γ2D(k)

− cos [γ2D(k)m] sin [λ2D(k)J]
h2,2D(k)

λ2D(k)
, (21)

f3D(k) = cos [γ3D(k)m] cos [λ3D(k)J] − sin [γ3D(k)m] sin [λ3D(k)J]χ3D(k), (22)

g3D(k) = − 1

γ3D(k)λ3D(k)
η3D(k) sin [γ3D(k)m] sin [λ3D(k)J] − sin [γ3D(k)m] cos [λ3D(k)J]

h1,3D(k)

γ3D(k)

− cos [γ3D(k)m] sin [λ3D(k)J]
h2,3D(k)

λ3D(k)
, (23)

where the mathematical symbols carry the same definitions as
before. Thus, the Floquet effective Hamiltonians for 2D and
3D systems can be obtained as

H2D,Flq = − ε2D(k)

sin [ε2D(k)T ]
g2D(k), (24)

H3D,Flq = − ε3D(k)

sin [ε3D(k)T ]
g3D(k), (25)

where ε2D(k) = 1
T cos−1[ f2D(k)] and ε3D(k) = 1

T cos−1

[ f3D(k)].
As discussed earlier, the gap closing conditions can be

obtained using the right-hand side of Eqs. (20) and (22) in
two and three dimensions as

2|J| = |m| + nπ in 2D, (26)

3|J| = |m| + nπ in 3D. (27)

Like the step drive case, the nature of the phase boundary
remains the same for all the topological orders in every dimen-
sion. To be precise, in two dimensions, the phase boundary
for both FFOTI and FSOTI is guided by Eq. (26), whereas,
in three dimensions, the same is controlled by Eq. (27). The
corresponding phase boundaries for two and three dimensions
are shown in Figs. 6(a) and 6(c), respectively.

Here, we intend to compare our findings between mass
kick and step drive protocols. The factor χ2D(k), computed
at the high-symmetry point k = k∗, plays an important role
in the case of both drives. This factor eventually allows
f2D(k∗) to acquire a simple form in terms of a single cosine
function. Once χ2D(k∗) inherits a complicated mathematical
form, f2D(k∗) cannot be written in a compact way. More
importantly, in order to observe the regular 0 mode and
anomalous π mode together in the driven system, the con-
dition |χ2D(k∗)| = 1 becomes very important. The condition
E (k∗) = 0 [E (k∗) = ±π ] yields the condition for obtaining
0 mode (π mode). Another crucial point to note here is that
the gap closing transition in the quasienergy spectrum has to
take place at the high-symmetry points, i.e., k = k∗. This

is an essential requirement to procure the anomalous FHOTI
modes. This further leads to the generic gap-closing condition,
as represented by Eqs. (10) and (17), cos (E (k∗)) = (−1)n,
with n = 0, 1, 2, 3, . . . . Thus the compact form of phase
boundaries eventually can be portrayed as d|J2| = |J1| + 2nπ

(d|J| = |m| + nπ ) for the step drive (mass kick), with d being
the dimension. The above discussion is not restricted to any
specific driving protocol discussed here, rather it is applicable
to a variety of driving schemes [57,63,64].

For completeness, we briefly discuss the numerical results
for this particular driving in two and three dimensions. To start
with two dimensions, we obtain the FFOTI phase by setting
α = 0. However, the quasienergy spectra in the slab geometry
remain qualitatively the same as those of the step drive case
for R1, R2, R3, and R4 phase as depicted in Figs. 1(d),
1(e), 1(f), and 1(g), respectively. To procure the FSOTI, we
set α to a nonzero value, and the corresponding quasienergy
spectra encompassing the corner modes (at Em = 0,±π ) for
a finite-size system turn out to be similar to that shown in
Figs. 2(d), 2(e), 2(f), and 2(g) for the sectors R1, R2, R3, and
R4, respectively.

In three dimensions, the FFOTI emerges when both α and
β are zero. The surface states can be found by realizing
the corresponding lattice model in the slab geometry [see
Figs. 3(d), 3(e), 3(f), and 3(g)]. The qualitative nature of these
surface states remains the same as that obtained implementing
the step drive protocol. Furthermore, the system manifests
FSOTI hosting gapless hinge modes when α �= 0 but β = 0.
The corresponding signature is highlighted in the quasienergy
spectrum that has been calculated using rod geometry [see
Figs. 4(d), 4(e), 4(f), and 4(g)]. To obtain the FTOTI phase,
both α and β are set to a nonzero value. The footprints of the
corner localized modes (at Em = 0,±π ) in the FTOTI phase
are found in the quasienergy spectrum for a finite-size system
[see Figs. 5(d), 5(e), 5(f), and 5(g)].

One intriguing difference regarding topological phase
boundary equations between step drive and periodic kick is
the absence of the time period T in the latter case. Importantly,
for the step drive the time period T is coupled to both driving
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FIG. 7. Tangential polarization py(xi ) is demonstrated for FSOTI for R1, R2, R3, and R4 in panels (a), (b), (c), and (d), respectively,
choosing the same parameters as in Fig. 2. (e) Octupolar moment Oxyz is schematically shown for a 3D FTOTI in the J1-J2 plane. Oxyz = 0.5
in phases R1 and R3, whereas Oxyz = 0.0 in both phases R2 and R4.

parameters J ′
1,2 such that J1,2 becomes the effective parameter

to characterize the dynamical system. On the other hand, for
periodic kick there exist two effective driving parameters,
J = J ′T and m, where only one of them is renormalized by
T while the other remains unaltered. This, in fact, allows
us to seek a frequency driven topological phase transition
in the system [see Fig. 6(b)]. We begin with a parameter
set: (m, J ′) = (0.4π, 0.5π ), such that we belong to R2 with
no modes. Afterwards, we decrease (increase) the frequency
(time period) of the drive while keeping both m and J ′ fixed.
Thus, we move towards R1, where the 0 mode appears, and
then to R4, where both the 0 and π modes emerge. There-
fore, the topological phase transition, mediated by the driving
parameters, is a common feature for step driving [57,63,64],
while the kick protocol can further give rise to the frequency
driven topological phase transition [42].

IV. TOPOLOGICAL CHARACTERIZATION

The topological protection of corner modes in 2D SOTI
can be traced down by the position resolved tangent po-
larization [14]. Due to the fact that a quadrupole can be
thought of in terms of dipole pumping, the fractional corner
charge in two dimensions can be traced back to tangen-
tial polarization, defined in the semi-infinite geometry with
OBC (Lx number of sites) along one of the directions (say,
x). Motivated by the above analogy in a static system, we
examine the tangential polarization for the driven case to
characterize FSOTI [18]. To compute the following, we first
construct the Wilson loop operator [14] in the slab geome-
try (considering PBC along the y-direction and OBC along
the x-direction) as Wy = Fy,ky+(Ny−1)�ky · · · Fy,ky+�ky Fy,ky with
[Fy,ky ]mn = 〈ψn,ky+�ky |ψm,ky〉, where �ky = 2π/Ny [Ny being
the number of discrete points considered inside the Brillouin
zone (BZ) along ky], |ψm,ky〉 is the mth occupied quasienergy
state of the Floquet operator U2D(ky, T ), and ky denotes the
base point from where we start to construct the Wilson loop
operator.

Then, the (2N × 2N)-dimensional Wannier Hamiltonian
HWy can be written as HWy = −i lnWy, whose eigenvalues
are of the form 2πνy. Here, νy ≡ mod(νy, 1) is the Wannier
center. The position-dependent tangential polarization py(xi )
is defined as

py(xi ) = 1

2πNy

∑
j,ky,β

∣∣∣∣∣
∑

α

[ν j,ky ]α[ψα,ky ]β,xi

∣∣∣∣∣
2

ν j,y, (28)

where [ν j,ky ]α refers to the αth component of the jth eigenstate
|ν j,ky〉 of the Wannier Hamiltonian HWy , corresponding to the
Wannier center ν j,y. Although the Wanner center ν j,y is inde-
pendent of the base point ky, the eigenstates of the Wannier
Hamiltonian do depend on the base point. Here, [ψα,ky ]β,xi is
the (β, xi )th component of the αth occupied eigenstate |ψα,ky〉
corresponding to the Floquet operator U2D(ky, T ). The index β

denotes the combined number of spin and pseudospin degrees
of freedom at a lattice site, which is four in the present case.

We depict the behavior of py(xi ) as a function of the lattice
site xi in Figs. 7(a), 7(b), 7(c), and 7(d) corresponding to the
phase R1, R2, R3, and R4 [see earlier in the text and Fig. 2(a)],
respectively. In the R1 and R3 phase, the system exhibits
corner modes at quasienergy Em = 0 or ±π [see Figs. 2(d)
and 2(f)]. In these cases, the tangential polarization is able to
portray the topological nature of corner modes. In particular,
the edge polarization, pedge

y = ∑Lx/2
xi=1 py(xi ), exhibits a quan-

tized value of 0.5, which is the signature of the second-order
topological phase [14], where Lx is the number of lattice sites
along the x-direction. In contrast, pedge

y remains at 0 for both
the trivial phase R2 and the nontrivial phase R4 (hosting both
0 and ±π modes), and hence we are unable to conclude
that there is any apprehensible distinction between them [57].
The dynamical quadrupolar motion introduced in Ref. [57],
however, can unambiguously reveal the presence of a corner
mode at 0 or π gap. But to evaluate said invariant, mirror
symmetry must be present in the system, which is not the
case here. Therefore, calculation of a topological indicator
for a mirror symmetry broken model system remains an open
question.

We emphasize here that the breaking of mirror symmetries
in h2,dD(k) severely affects the quadrupole and octupole mo-
tion that otherwise can distinguish the regular 0 mode from the
anomalous π mode by exhibiting gapless crossing with time
and accurately capturing the bulk boundary correspondence
for the driven systems [57,80]. The above two quantities serve
as the legitimate bulk invariants for the FHOTI phases follow-
ing the construction of a dynamical nested Wilson loop. We
cannot resort to these bulk invariants for their gapped profile
due to the absence of mirror symmetry in our case. Therefore,
we continue with the edge polarization [Eq. (28)], which
turns out to be an inappropriate bulk invariant for dynamics,
and thus the bulk boundary correspondence cannot be fully
captured for all the dynamical phases discussed here.

For a FTOTI in three dimensions, considering PBC in the
real-space geometry, one can calculate the octupole moment,
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defined as [81]

Oxyz = Re

[
− i

2π
Tr

(
ln

(
�

†
0 exp

[
2π i

∑
r

ôxyz(r)
]
�0

))]
,

(29)

where �0 is the many-body ground state, which we obtain
by columnwise arranging the quasienergy states of the Flo-
quet operator U3D(T ) according to their quasienergy −�/2 �
Em � 0: �0 = ∑

m∈Em�0 |φm〉〈φm| [53,58,61]. Also, ôxyz =
n̂(r)xyz/L3, with n̂(r) being the number operator at r =
(x, y, z).

Note that, for the phase R1 and R3, Oxyz exhibits a quan-
tized value of 0.5, where corner modes appear separately at
quasienergy Em = 0 and ±π , respectively (see Fig. 5), al-
though Oxyz cannot discriminate between the phase R2 and
R4, manifesting a congruent value of 0. We depict Oxyz us-
ing a schematic representation in Fig. 7(e). We note that the
octupole moment can be considered as the appropriate bulk
invariant for the static system. The anomalous mode cannot be
appropriately characterized by the same. It might be possible
that 0 and π mode interfere destructively yielding 0 (mod
1) as a measure of the invariant. As discussed above, the
Floquet operator again turns out to be insufficient for the
proper dynamical characterization. Therefore, the octupole
moment [Eq. (29)] as well cannot refer to the accurate bulk
boundary correspondence for a driven system similar to the
edge-polarization [Eq. (28)].

V. DISCUSSIONS AND OUTLOOK

A. Extended phase diagram

First our aim is to generalize the topological phase diagram
as displayed in Fig. 2(a). To contemplate the extended phase
diagram, we extend the scale of (J1, J2) so that one can obtain
various phases |J2| = |J1|/2 + nπ with different values of n.
We know that there exist four (two) regular 0 (anomalous
π , residing at Em = +π or −π )-modes in the FSOTI phase.
By changing the parameter set (J1, J2), one can in principle
reach several other FSOTI phases where the number of 0 and
π modes can be varied. This is extensively demonstrated in
Fig. 8. The 0 (π ) -gap closings are indicated by the blue
(red) lines. As a result, one can clearly see that the dynamical
topological phases, separated by blue (red) lines, are hosting
an identical number of π (0) modes. The blue (red) lines
are associated with n = 0, 2, 4, . . . (n = 1, 3, 5, . . . ) provided
J1, J2 is positive. More interestingly, this phase diagram is
invariant with the time period T as the effective dynamics
controlling parameters (J1, J2) are both renormalized by the
time period T . One can hence think of this extended phase
diagram as equally valid for the other step drive protocols
[57,63,64]. However, the above discussion is applicable for all
the other phase diagrams for the step drive scheme presented
in this work. Therefore, in the future it would be an interesting
open question to characterize these phases with an appropriate
dynamical topological invariant.

B. High-frequency approximation

Having discussed and analyzed our findings at a given fre-
quency, we now present the high-frequency effective Hamil-

FIG. 8. Extended phase diagram is illustrated in the J1-J2 plane
in the case of a 2D FFOTI/FSOTI. Here, (i, j) represent the number
of 0, π modes present at that parameter regime.

tonians for both driving protocols. In the high-frequency limit,
i.e., T → 0, the effective Hamiltonians for two and three
dimensions in the case of a step drive and the periodic mass
kick boil down to the following form [82]:

H eff
2D,step(k) = J ′

1

2
h1,2D(k) + J ′

2

2
h2,2D(k) + J ′

1J ′
2T

4
η2D(k), (30)

H eff
3D,step(k) = J ′

1

2
h1,3D(k) + J ′

2

2
h2,3D(k) + J ′

1J ′
2T

4
η3D(k), (31)

H eff
2D,kick (k) = J ′h2,2D(k) + m

T
h1,2D(k) + mJ ′η2D(k), (32)

H eff
3D,kick (k) = J ′h2,3D(k) + m

T
h1,3D(k) + mJ ′η3D(k). (33)

For the mass kick protocol, we also approximate m → 0
such that m/T becomes finite. One can observe that the static
Hamiltonians HStatic

2D (k) and HStatic
3D (k) [Eqs. (2) and (3)] re-

semble the high-frequency effective Hamiltonians H eff
2D,step(k)

and H eff
3D,step(k) [Eqs. (30) and (31)], except for the appearance

of the additional term associated with ηdD(k) in the latter case.
In the high-frequency limit, the effective Hamiltonians are
quasistatic in the sense that no long-range hopping has been
incorporated with the inclusion of this additional term propor-
tional to ηdD(k). This might allow us to work with the static
definition of a topological invariant that is equally trustwor-
thy to characterize the dynamical phases such as the Floquet
quadrupole moment [53,58,61,65,66,69]. We note that the 0
mode is expected to survive even in the presence of this
extra factor as the effective Hamiltonians preserve particle-
hole symmetry: PH eff

dD,ζ (k)P−1 = −H eff
dD,ζ (−k), with ζ =

step, kick [53,83]. Interestingly, with decreasing frequency,
different Floquet zones can come closer and that might results
into the anomalous π -mode. However, the above statement is
not equally applicable to different kinds of driving. It might
be useful in the future to analyze the dynamical topological
phases, with appropriate topological characterization, in the
intermediate frequency range where one can consider O(T n)
for n > 1 terms.
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C. Other possible driving schemes to engineer FHOTI

We know that one can architect the FFOTI phase by em-
ploying laser driving as extensively discussed for 2D lattice
systems [36,38,40,79,84,85]. Very recently, the emergence of
FSOTI phases in two dimensions has been introduced us-
ing laser driving [58]. On the other hand, periodic driving
through phonon-mediated spin-orbit coupling is shown to ex-
hibit the FSOTI phase when the underlying static system has
reflection symmetry [86]. The manipulation of TRS using the
Floquet-Zeeman term becomes instrumental to experience the
Floquet second-order topological superconductor phase [87].
The role of mirror symmetry is also emphasized in order to
achieve the FSOTI phase [56]. Having discussed a handful
of examples including C4 symmetry breaking perturbations
[17,53], we can comment that only a few of the available
dynamical protocols are able to produce the anomalous π

mode in the FHOTI phases. In this context, the gap-structure
of the quasienergy spectrum at the high-symmetry point might
become very important, as we discussed previously. Our ap-
proach is successfully able to portray the series of FHOTI
phases, FFOTI → FSOTI → FTOTI, while incorporating
different symmetry-breaking terms only in one of the steps
(midkick) Hamiltonian for the step (kick) protocol. In the
present case, the Floquet operator satisfies antiunitary symme-
try PUdD(k, T )P−1 = UdD(−k, T ), referring to the fact that
the 0 and π modes in the FFOTI and FHOTI phases are pro-
tected by the particle-hole symmetry [88]. It remains an open
question how one can engineer the hierarchy of FHOTI phases
(hosting dynamical π modes) in three dimensions employing
other drive protocols (e.g., laser driving).

We now compare our findings with another related work
where systematic generation of regular FHOTI phases with
zero quasienergy modes has been demonstrated [61]. The
periodic kick with high frequency, compared to the bandwidth
of the system, in the Wilson-Dirac mass term there leads
to the zero quasienergy Floquet hinge and corner modes.
A quantitative investigation, adopted from a specific case
with the kick in the second-order Wilson-Dirac mass term
V1 = √

3�1(cos kx − cos ky) (�1 < t0), suggests that to ob-
serve regular FHOTI phase with zero quasienergy, the time
period T has to be small compared to the bandwidth of
the static system, with t0 and m being the hopping ampli-
tude and the first-order mass term, respectively. Interestingly,
the anomalous phase (with π mode) cannot be embedded
in the high-frequency phase diagram following the above-
mentioned drive protocol [61]. This is in stark contrast to
our present case with the step drive protocol where all four
dynamic phases R1, R2, R3, and R4 have emerged irrespective
of the frequency regime.

Having compared the various examples of Floquet en-
gineering of HOT phases, we now highlight the structural
tunability of Floquet hinge modes. It has been shown that
the SOTI phase in three dimensions can host connected hinge
modes, preserved by a nonsymmorphic space-time symmetry,
namely time glide symmetry, under harmonic drive [59]. To
be precise, the hinge modes are localized at the intersections
of the two sets of surfaces that are related by the reflec-
tion part of the time-glide symmetry. The harmonic drive
induces opposite masses in these sets of surfaces, leading

to a connected hinge at their intersections along the x̃-, z̃-,
and ỹ-directions provided the crystal cuts are not along the
principal axes. We do not encounter such hinge modes in our
case, where four disconnected hinge modes appear only along
the z-direction as xz- and yz-surfaces are gapped out with
opposite mass terms. Therefore, the SOTI is manufactured
out of the FOTI by gapping out the surface modes except
at the hinges in three dimensions due to the Wilson-Dirac
mass term (cos kx − cos ky)μxσy [17,21,61,66]. Importantly,
the SOTI phase is preserved by C4T symmetry. The above
mechanism also holds for the FSOTI phase as long as lat-
tice termination remains compatible with the C4 symmetry,
respecting the principal axes. The Floquet dynamics can be
simply understood by the fact that the FFOTI is elevated to
FSOTI followed by FTOTI while the HOT mass terms are
appropriately incorporated in h2,3D(k). Therefore, one can in
principle engineer disconnected and connected hinge modes
by suitably choosing the Wilson-Dirac mass and/or Floquet
driving and/or lattice configuration.

D. Effect of disorder

In recent years, the disorder mediated HOTI phases have
attracted significant attention [89–92]. In particular, random
on-site disorder in a 2D system, with chiral symmetry, can
induce a quadrupolar topological insulating phase with in-
teresting localization properties [90]. On the the hand, for
driven systems, the concept of a Floquet Anderson insulator
is introduced where a topologically protected nonequilibrium
transport phenomenon is observed [93,94]. In this context, the
effect of weak disorder has been investigated in a Floquet qua-
sistatic second-order topological superconductor phase [66].
This is an emerging field of research where strong disorder
effects can lead to significantly different phenomena in the
context of FHOTI phases [95,96]. The appropriate definition
of topological invariant would become very important to char-
acterize these phases; this remains an open field of research.

VI. SUMMARY AND CONCLUSION

To summarize, in this article we consider simple periodic
drive protocols, and we illustrate the systematic generation of
a series of FHOTI phases including the FFOTI phase, both
in two and three dimensions. To begin with, we consider the
two-step drive protocol, in which the first half is comprised
of on-site terms only and the second half contains all the
off-diagonal hopping terms. With such an admixture of tight-
binding Hamiltonians, we first show the appearance of the
FFOTI phase in the absence of discrete symmetry-breaking
Wilson-Dirac mass terms. Upon systematic inclusion of these
terms in the second step Hamiltonian, we obtain the FSOTI
followed by FTOTI phases in three dimensions. In the pro-
cess, we also exemplify the 2D case in which one can reach
up to corner modes in the FSOTI phase. Most interestingly,
we find the regular quasistatic 0 mode, similar to the static
case, as well as the anomalous (dynamical) π mode, unlike
the static case, in all the above phases. We study analyti-
cally the evolution operator and the corresponding topological
phase diagram, consisting of 0, π , 0-π -modes in a differ-
ent parameter regime. The latter is successfully explained
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by the appropriate gap closing conditions from the evolution
operator. We support our analytical findings by numerical
computation for a finite-size system with appropriate bound-
ary conditions. We further continue with another driving
scheme, namely mass kick, to recheck the robustness of the
above findings. The qualitatively identical phase diagram, ob-
tained under the above driving scheme, can be attributed to the
special structure of the identity term in the evolution operator
at the high symmetry points. Most interestingly, the number
of 0 and π modes can vary in the step drive case, while a
frequency-driven topological phase transition is witnessed for
the mass kick protocol. We employ tangential polarization (a
Floquet octupolar moment) to characterize topologically the
FSOTI (FTOTI) in two (three) dimensions with either 0 or
±π corner modes. However, our topological inviariants are
incapable of characterizing the dynamical phase hosting the
regular 0 and the anomalous π mode simultaneously.

In recent times, significant experimental advancement
has been made in the case of HOTI based on solid-state

materials [70,71], acoustic systems [72,73,97,98], classi-
cal electrical circuits [76], etc, although the experimental
observation of FHOTI phases in two and three dimensions is
still in its infancy [99]. Nevertheless, given the experimental
progress in this research field, we believe that our theoret-
ical model and driving protocols to generate the series of
FHOTI phases (anchoring 0 and π modes) are timely and
could potentially be realized in future experiments. However,
an exact description of experimental techniques and a predic-
tion of candidate material are not the subjects of our present
manuscript.
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[21] D. Călugăru, V. Juričić, and B. Roy, Higher-order topological
phases: A general principle of construction, Phys. Rev. B 99,
041301(R) (2019).

[22] L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary
Correspondence for Topological Crystalline Phases, Phys. Rev.
X 9, 011012 (2019).

[23] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[24] P. Szumniak, D. Loss, and J. Klinovaja, Hinge modes and
surface states in second-order topological three-dimensional
quantum Hall systems induced by charge density modulation,
Phys. Rev. B 102, 125126 (2020).

115418-11

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1126/science.1148047
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nature06843
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevLett.123.186401
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.102.125126


GHOSH, NAG, AND SAHA PHYSICAL REVIEW B 105, 115418 (2022)

[25] B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and
Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3, 520
(2021).

[26] A. Eckardt, Colloquium: Atomic quantum gases in periodically
driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).

[27] T. Oka and S. Kitamura, Floquet engineering of quantum mate-
rials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

[28] Y. Kayanuma and K. Saito, Coherent destruction of tun-
neling, dynamic localization, and the Landau-Zener formula,
Phys. Rev. A 77, 010101(R) (2008).

[29] T. Nag, S. Roy, A. Dutta, and D. Sen, Dynamical localization in
a chain of hard core bosons under periodic driving, Phys. Rev.
B 89, 165425 (2014).

[30] T. Nag, D. Sen, and A. Dutta, Maximum group velocity in a
one-dimensional model with a sinusoidally varying staggered
potential, Phys. Rev. A 91, 063607 (2015).

[31] L. D’Alessio and A. Polkovnikov, Many-body energy localiza-
tion transition in periodically driven systems, Ann. Phys. 333,
19 (2013).

[32] L. D’Alessio and M. Rigol, Long-Time Behavior of Isolated
Periodically Driven Interacting Lattice Systems, Phys. Rev. X
4, 041048 (2014).

[33] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, Periodically
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