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Topological characterization and stability of Floquet Majorana modes in Rashba nanowires
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We theoretically investigate a practically realizable Floquet topological superconductor model based on a
one-dimensional Rashba nanowire and proximity-induced s-wave superconductivity in the presence of a Zeeman
field. The driven system hosts regular 0-Majorana end modes and anomalous π -Majorana end modes (MEMs).
By tuning the chemical potential and the frequency of the drive, we illustrate the generation of multiple
MEMs in our theoretical setup. We utilize the chiral symmetry operator to topologically characterize these
MEMs via a dynamical winding number constructed out of the periodized evolution operator. Interestingly,
the robustness of the 0- and π -MEMs is established in the presence of on-site time-independent random disorder
potential. We employ the twisted boundary condition to define the dynamical topological invariant for this
translational-symmetry broken system. The interplay between the Floquet driving and the weak disorder can
stabilize the MEMs, giving rise to a quantized value of the dynamical winding number for a finite range of
drive parameters. This observation might be experimentally helpful in scrutinizing the topological nature of the
Floquet MEMs. We showcase another driving protocol, namely, a periodic kick in the chemical potential, to study
the generation of Floquet MEMs in our setup. Our work paves a realistic way to engineer multiple MEMs in a
driven system.
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I. INTRODUCTION

Topological superconductors (TSCs) hosting Majorana
zero modes (MZMs) have been at the heart of modern
condensed matter physics for the last two decades [1–6].
Majorana fermions are charge-neutral particles satisfying the
Dirac equation, but unlike the Dirac fermions, they are self-
antiparticles. However, in a condensed matter system, they
do not constitute elementary particles, rather they appear
as emergent quasiparticles [3–6]. Majorana fermions obey
non-Abelian statistics and are proposed to be the building
blocks of fault-tolerant quantum computations [7–11]. The
first theoretical proposal for MZMs in a one-dimensional (1D)
topological system is put forward by Kitaev [1], based on
a spinless p-wave superconducting chain. However, p-wave
superconductors are not found naturally, and this restricts the
experimental realization of the Kitaev’s model. In this direc-
tion, Fu and Kane put forward the first experimentally feasible
theoretical model proposal [12] based on topological insula-
tors. In their proposal, an s-wave superconductor is placed in
close proximity to the surface states of a three-dimensional
strong topological insulator and a magnetic insulator. An ef-
fective spiness px + ipy pairing is generated in the system
due to the interplay between the s-wave superconductivity,
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the spin-orbit coupling (SOC), and the exchange field. This
system supports Majorana bound states at the vortex core. The
generation of this spinless px + ipy superconductivity has also
been described in other models [13,14].

However, an alternative elegant proposal for realizing the
MZMs is proposed in systems consisting of 1D semicon-
ducting nanowirewire (NW) (e.g., InAs, InSb, etc.) with
strong SOC and proximity-induced s-wave superconductiv-
ity (e.g., Nb) in it [3,4,6,15–23]. Such proposals, based on
semiconductor-superconductor heterostructure, have attracted
few recent experiments. The 2e2/h quantized zero-bias peak,
obtained via the tunneling spectroscopy measurements, has
been reported as an indirect signature of the MZMs [24–34].
However, such quantization of the zero-bias peak may also
arise due to the Andreev bound states induced by the quantum
dots formed at the junction interface or the Kondo effect due to
the magnetic impurities present in the system [35–41]. Thus,
the compelling and distinctive signature of the MZMs is yet
to be found.

On the other hand, the Floquet generation of topological
systems has been capturing much attention due to its ability
to engineer topological phenomena out of a nontopological
system [42–65]. The nontrivial winding of time-dependent
wave function allows one to generate the anomalous topologi-
cal boundary modes at finite energy, namely, π modes, which
do not have any static counterpart. The Floquet generation of
TSCs hosting Majorna end modes (MEMs), relying upon the
spinless p-wave Kitaev chain, has been investigated [53–55]
along with their transport signature [66]. To add more, the
1D cold-atomic NW–s-wave superconductor heterostructure
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FIG. 1. (a) Schematic representation of our setup is shown here.
One-dimensional nanowire (NW) (blue) with strong spin-orbit cou-
pling is placed on top of an s-wave superconducting slab (green).
A magnetic field Bx is applied along the x direction and a gate
voltage Vg is applied across the cross section of the NW to control the
chemical potential. The Majorana end modes (MEMs) [red] appear at
the two ends of the NW. (b) Schematic demonstration of our periodic
three-step drive protocol [see Eq. (5)] is presented.

using the step drive protocol [56], the time-dependent ac elec-
tric field [59], and the periodically driven chemical potential
[58,60,61] are found to be instrumental in the context of
Floquet TSCs (FTSCs). The braiding of these Floquet modes
further enriches the field of quantum computations [67–70].
Importantly, following the realistic Rashba NW model, the
generation of multiple MEMs similar to Ref. [53] has not
been explored so far to the best of our knowledge. Also, these
FTSCs hosting 0- and π -MEMs have not been characterized
using a proper dynamical topological invariant. To this end,
we ask the following questions: (a) Is it possible to generate
the FTSC with multiple 0- and π -MEMs stating from a static
realistic model based on 1D Rashba NW? (b) How does one
characterize these dynamical modes using a proper dynamical
invariant? (c) Are these Floquet MEMs stable against static
random disorder? The interplay between Floquet physics and
disorder might be useful in the context of topological charac-
terization of the anomalous MEMs. We additionally note that
the above questions are practically pertinent given the experi-
mental developments of Floquet systems based on solid-state
materials [71,72], acoustic setup [73,74], photonic platforms
[75,76], etc.

In this article, we first revisit the static model based
on 1D Rashba NW in the presence of a magnetic field
and proximity-induced s-wave superconductivity (see Fig. 1)
[3,4,15–19,22,23] and study its topological phase boundaries
(see Fig. 2). We exploit the chiral symmetry to define the
topological invariant for this system. Afterward, we tend to-
wards the Floquet generation of TSCs using a three-step drive
protocol (see Fig. 3). We employ the periodized evolution
operator to topologically characterize the dynamical modes
(see Fig. 4). The robustness of the dynamical modes is also
investigated against on-site random disorder (see Fig. 5). In
the presence of disorder, the translation symmetry no longer
holds; hence, we define a real-space topological invariant to
characterize these dynamical modes (both 0- and π -MEMs).
We extend our analysis for the mass kick drive protocol to

verify our proposals on Floquet Majorana modes (see Figs. 6
and 7).

The remainder of the article is organized as follows. We
introduce the static Hamiltonian and its topological charac-
terization in Sec. II. In Sec. III, we discuss the generation of
Floquet MEMs and their topological characterization. In the
presence of static random disorder, the stability of the dynam-
ical MEMs via the appropriate topological invariant is studied
in Sec. IV. We also introduce the periodic kick protocol to
generate the MEMs in Sec. V. We discuss the possible exper-
imental connection and feasibility of our theoretical proposal
in Sec. VI. We finally summarize and conclude our findings in
Sec. VII.

II. MODEL

A. Model Hamiltonian

We consider the Rashba NW model, placed on the top of
an s-wave superconductor [see Fig. 1(a)], while a magnetic
field is applied along the x directon [17]. The superconducting
gap is induced in the NW via the proximity effect. We con-
sider the following Bogoliubov-de Gennes (BdG) basis: �k =
{ψk↑, ψk↓, ψ

†
−k↓,−ψ

†
−k↑}t; here, ψk↑ (ψ†

k↑) and ψk↓ (ψ†
k↓)

represent the electron annihilation (creation) operators for the
spin-up sector and the spin-down sector, respectively, and t
stands for the transpose operation. The BdG Hamiltonian for
the NW is given as [3,4,16,17,19,22]

H0(k) = [(2t−c0) − 2t cos k]�1+ 2u sin k�2+ Bx�3 + ��4,

(1)

where the 4×4 � matrices are given as �1 = τzσ0, �2 =
τzσz, �3 = τ0σx, and �4 = τxσ0, while the Pauli matrices
τ and σ act on particle-hole and spin (↑, ↓) subspace,
respectively. Here, c0, t , u, Bx, and � represent the chem-
ical potential, the nearest-neighbor hopping amplitude, the
Rashba SOC strength, the strength of the magnetic field
along the x direction, and the induced s-wave superconduct-
ing gap, respectively. The Hamiltonian [Eq. (1)] respects the
chiral symmetry S = τyσz: S−1H0(k)S = −H0(k), and it re-
spects the particle-hole symmetry C = τyσyK: C−1H0(k)C =
−H0(−k). However, it breaks the time-reversal symmetry
T = iτ0σyK, where K represents the complex-conjugation
operator: T −1H0(k)T �= H0(−k).

At k = 0, the Hamiltonian [Eq. (1)] undergoes a gap-

closing transition, when Bx = |B1
x | =

√
c2

0 + �2, while an-
other gap-closing transition occurs at k = π , when Bx =
|B2

x | =
√

(4t − c0)2 + �2. These bulk gap-closing conditions
can identify the topological phase boundaries. Having em-
phasized the problem analytically, we tie up with numerical
results to corroborate our findings. We employ the open
boundary condition (OBC) and depict the eigenvalue spectra
of the Hamiltonian [Eq. (1)] in Fig. 2(a) as a function of the
magnetic field Bx. From Fig. 2(a), one can identify that the
system is trivially gapped when Bx < |B1

x | and Bx > |B2
x | with

no MZMs present. However, a pair of MZMs appear at the two
ends of the NW (one MZM per end), when |B1

x | � Bx � |B2
x |,

identifying the TSC phase in the static model.
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FIG. 2. (a) Energy eigenvalue spectra for the static Hamiltonian
[Eq. (1)], employing the open boundary condition, are shown as
a function of the magnetic field Bx . The corresponding winding
number W is depicted as a function of Bx in panel (b) for a fixed value
of c0 = 1.0. (c) We demonstrate W in the c0 − Bx plane to illustrate
the topological phase diagram. Other model parameters are chosen as
(t, u, �) = (1.0, 0.5, 1.0). MZMs are obtained for |B1

x | � Bx � |B2
x |

(see text for details).

B. Topological characterization

The 1D system under consideration preserves the chiral
symmetry S. Thus, it can be topologically characterized by
a Z winding number, classifying the Hamiltonian’s first ho-
motopy class within the first homotopy group 	1[U (N )] and
providing us with the number of zero-energy modes [77,78].
In the canonical basis representation (chiral basis), where S
is diagonal, the Hamiltonian [Eq. (1)] takes an antidiagonal
form. This reads as

H̃0(k) = U †
S H0(k)US =

(
0 H+

0 (k)

H−
0 (k) 0

)
, (2)

where the unitary matrix US is constructed using the chiral
basis, given as

US = 1√
2

⎛
⎜⎜⎜⎜⎝

0 i 0 −i

−i 0 i 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎟⎠, (3)

and H±
0 (k) are 2×2 square matrices, defined on the ± chiral

block, respectively. Using H±
0 (k), we can define the winding

number W (∈ Z) as [77,78]

W =
∣∣∣∣∣ ± i

2π

∫ π

−π

dkTr
[{

H±
0 (k)

}−1
∂kH±

0 (k)
]∣∣∣∣∣. (4)

We illustrate W as a function of Bx for a fixed value of c0

in Fig. 2(b). The winding number W correctly identifies the
phase boundary between the trivial W = 0 and the topolog-
ical W = 1 phases. In order to obtain the topological phase
diagram, we further depict the winding number in the c0 − Bx

plane in Fig. 2(c). The system exhibits the TSC phase with
W = 1 for Bx > |B1

x |. Our findings are consistent with the
previously reported results [3,4,17] and constitute the back-
ground for the investigation of the driven system as discussed
in the next section.

III. FLOQUET MAJORANA MODES AND THEIR
TOPOLOGICAL CHARACTERIZATION

A. Driving protocol and emergence of Floquet Majorana modes

We choose a nontopological parameter space for the
Hamiltonian H0(k) [Eq. (1)] to start with and consider a three-
step periodic driving scheme to generate the FTSC phase as

Hstep(k, t ) = H1 t ∈ [0, T/4),

= H0(k) t ∈ [T/4, 3T/4),

= H1 t ∈ [3T/4, T ], (5)
where H1 = −c1�1 represents an on-site term modulating
the chemical potential. Here, T (�) stands for the time
period (frequency) of the drive. We depict the driving pro-
tocol schematically in Fig. 1(b). The Floquet operator can be
constructed as follows:

Ustep(k, T ) = TO exp

[
− i

∫ T

0
dt H (k, t )

]

= e−iH1T/4e−iH0(k)T/2e−iH1T/4 . (6)

We can diagonalize the Floquet operator Ustep(k, T ) to
obtain the quasienergy spectrum as Ustep(k, T ) |�n(k)〉 =
e−iE ′

n (k)T |�n(k)〉. Here, n represents the band index in the
quasienergy spectrum. We define En(k) = E ′

n(k)T such that
the quasienergy always lies within the range, i.e., En(k) ∈
[−π, π ].

We depict the bulk quasienergy bands E (k) as a function
of momenta k for � = 1.5 and 2.5 in Figs. 3(a) and 3(b),
respectively. The bulk quasienergy bands do not exhibit any
direct signature of the end modes due to the periodic boundary
condition. However, by analyzing the bulk bands, one can ob-
tain a qualitative idea about the number of end modes present
within a certain quasienergy gap. From the insets (I1 and I2)
of Fig. 3(a), we can observe two openings of the bulk gap
corresponding to two MEMs at these gaps. In these insets, 0
and π lines are indicated by the red and green dotted lines,
respectively. Similarly, from the inset of Fig. 3(b), one can
identify four gap openings near E (k) = π (denoted by the
green dotted line), corresponding to four end modes at that
gap. Nonetheless, we also verify our claims from the finite
geometry calculations employing the OBC.

Having studied the bulk quasienergy bands, we impose
the OBC and diagonalize the Floquet operator [Eq. (6)]. We
demonstrate the quasienergy eigenvalue spectra for � = 1.5
and � = 2.5 in Figs. 3(c) and 3(d), respectively. We can
identify two 0-MEMs (one 0-Majorana mode per end) and two
π -MEMs (one π -Majorana per end) from the insets I1 and
I2 of Fig. 3(c), respectively. From Fig. 3(d), however, we can
observe only four π -MEMs (two π -Majoranas per end), while
0-MEMs are absent in this case. This is also emphasized in the
inset of Fig. 3(d). Thus, the finite geometry calculations verify
the findings as anticipated from the bulk quasienergy bands.
The information about the nature of the bulk gap, whether
it is topological or trivial, is acquired by investigating the
existence of MEMs within the bulk gap under the OBC. The
winding number captures the topological property of the bulk
gap that we demonstrate below.

To study the localization properties of the in-gap states,
we illustrate the normalized site-resolved probability (|�|2)
in Figs. 3(e) and 3(f) corresponding to the 0- and π -MEMs
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FIG. 3. Bulk quasienergy spectra for the three-step drive protocol
[Eq. (5)] are shown for � = 1.5 and � = 2.5 in panels (a) and (b),
respectively. In the insets I1 and I2 of panel (a) [inset of panel
(b)], we depict the bulk gap around quasienergy E (k) = π and
E (k) = 0, respectively [quasienergy E (k) = π ]. In panels (c) and
(d), we illustrate the quasienergy spectra Em as a function of the
state index m for our system obeying OBC, corresponding to pan-
els (a) and (b), respectively, while in the insets, we portray the
zoomed-in quasienergies for better clarity. The appearance of 0- and
π -Majorana end modes (MEMs) are evident from these figures. We
show the normalized site-resolved probability (|�|2) corresponding
to the 0- and π -MEMs in panels (e) and (f), respectively. Here, we
consider N = 4000 lattice sites to obtain sharp Majorana localization
at individual ends of the NW. All the other model parameters are
chosen as (c0, c1, �, Bx, t, u) = (1.0, 0.2, 1.0, 1.0, 1.0, 0.5).

as shown in Fig. 3(c), respectively. One can observe that both
the 0- and π -MEMs are sharply localized near the two ends
of the NW. To corroborate that the end modes represent a
Majorana, we consider the wave function of the 0 and π

modes, corresponding to Figs. 3(e) and 3(f), respectively. For
the ith lattice site, the wave function takes the form �i =
{ψi↑, ψi↓, ψ

†
i↓,−ψ

†
i↑}t. We further verify that |ψi↑| = |ψ†

i↑|
and |ψi↓| = |ψ†

i↓| for both the 0 and π modes. Hence, both
the 0 and π modes represent Majorana modes being their
own antiparticle. Note that the amplitudes of the electron and
hole parts are found to be identical for a given species of
spin. This refers to the emergent spinless p-wave nature of
the supercoducting gap within which MEMs exist.

B. Topological characterization

We exploit the chiral symmetry to characterize the topo-
logical properties of dynamical MEMs. The 0- and π -MEMs
cannot be characterized distinctly using the Floquet operator
only. To resolve this, we introduce the notion of gap ε via the
periodized evolution operator as [45,79]

Uε (k, t ) = Ustep(k, t )[Ustep(k, T )]−t/T
ε , (7)

where Ustep(k, t ) represents the time-evolution operator, and
the (−t/T )th power of the Floquet operator for the ε gap
[Ustep(k, T )]−t/T

ε is given as

[Ustep(k, T )]−t/T
ε =

N/2∑
n=1

e−i(2ε−|En (k)|)t/T |ψn(k)〉 〈ψn(k)|

+
N∑

n=N/2+1

e−i|En (k)|t/T |ψn(k)〉〈ψn(k)|,

(8)

where n = 1 · · · N/2 (N/2 + 1 · · · N) represents valence (con-
duction) bands. Note that Uε (k, 0) = Uε (k, T ) = I and
Uε (k, t ) is periodic in time, i.e., Uε (k, t ) = Uε (k, t + T ).
Since Hstep(k, t ) respects chiral symmetry, one can show that
the chiral symmetry S imposes the following constraints on
the periodized evolution operator [80] as

SUε (k, t )S−1 = U−ε (k,−t )e2π it/T . (9)

Using the periodicity condition of Uε (k, t ), we obtain the fol-
lowing at the half period: SUε (k, T

2 )S−1 = −U−ε (k, T
2 ). At the

half period t = T
2 , we obtain the constraints on the Uε (k, T

2 )
for the 0 and π gaps as

SU0

(
k,

T

2

)
S−1 = −U0

(
k,

T

2

)
,

SUπ

(
k,

T

2

)
S−1 = Uπ

(
k,

T

2

)
, (10)

where we have used the relation U−π (k, T
2 ) = −Uπ (k, T

2 ).
Thus, in the chiral basis, U0(k, T

2 ) [Uπ (k, T
2 )] takes the block

antidiagonal [diagonal] form. This reads as

Ũ0

(
k,

T

2

)
= U †

S U0

(
k,

T

2

)
US =

(
0 U +

0 (k)

U −
0 (k) 0

)
, (11)

Ũπ

(
k,

T

2

)
= U †

S Uπ

(
k,

T

2

)
US =

(
U +

π (k) 0

0 U −
π (k)

)
. (12)

Using U ±
ε (k), the dynamical winding number Wε for the

ε(= 0, π ) gap can be defined as [80]

Wε =
∣∣∣∣ ± i

2π

∫ π

−π

dkTr
[{

U ±
ε (k)

}−1
∂kU

±
ε (k)

]∣∣∣∣. (13)

Here, Wε counts the number of modes present per end of the
NW at the ε gap. Thus, Wε serves as the dynamical analog
of Eq. (4). We demonstrate the topological phase diagram
in terms of W0 and Wπ in the c0 − � plane in Figs. 4(a)
and 4(b), respectively. The color bar represents the number
of MEMs present in the system. One can observe that the
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FIG. 4. We demonstrate the dynamical winding numbers W0 and
Wπ (quasienergy gap corresponding to 0-energy, G0 and π -energy,
Gπ ) in the c0 − � plane in panels (a) and (b) [panels (c) and (d)],
respectively. Here the color bar represents the winding number (en-
ergy gap) for panels (a) and (b) [panels (c) and (d)]. All the other
parameters are chosen to be the same as those mentioned in Fig. 3.

numbers of both 0- and π -MEMs are found to be more than
1 in a certain parameter regime at low frequency. We find
that, in the intermediate range of frequency � ∈ [0.35, 1.0]
(while the hopping parameter is set to unity), one can observe
various topological phases with multiple Majorana 0 and π

modes. Therefore, from the experimental point of view such
a low to intermediate range of frequency might be useful for
obtaining multiple 0- and π -MEMs. In the case of lower fre-
quency � < 0.35, the topological phases become short lived
in the parameter space resulting in a problem for choosing a
suitable experimentally feasible parameter range. On the other
hand, an intermediate to moderately high frequency range
(� ∼ 1.0 − 2.0) can also be suitable in terms of engineering
single Majorana 0 and π modes.

In Figs. 4(c) and 4(d), we show the quasienergy gap around
the quasienergies 0 and π , namely, G0 and Gπ , respectively.
The different phases, characterized by a well-defined dynam-
ical winding number, are gapped out, while on the phase
boundaries, associated with vanishing gaps G0,π = 0, dynam-
ical winding numbers are ill-defined. Therefore, there exists a
one-to-one correspondence between the gap and the invariant.
Note that the system is in the trivial phase when the wind-
ing number becomes 0. One can analytically understand the
0-energy gap in the high-frequency T → 0 limit from an ef-
fective Hamiltonian Heff = H0/2 + H1/2 that can be obtained
from the Brillouin-Wigner approximation [81]. As a result, the
gap is modified by a parameter c1 in addition to the parameters
present in H0.

The modulation in the MEM number is possible only in
a driven system via the procreation of longer-range hoppings
that is more probable at low-frequency regimes. By contrast,
a high-frequency drive is not able to generate higher-order

hoppings resulting in one MEM similar to the static Hamil-
tonian. In a driven system, one can engineer more gap-closing
transitions at quasienergy E (k) = 0/π [see Fig. 3(b)], which
in turn can give rise to the emergence of more Floquet MEMs
at E (k) = 0/π . The number of MEMs, residing at 0 gap,
can be different from that of at π gap causing a rich Floquet
topological phase diagram unlike the static case. The multiple
Floquet MEMs are protected by the chiral symmetry. The
generation of multiple 0- and π -MEMs and their topological
characterization employing appropriate dynamical invariants
serves as the prime result of the current paper.

IV. STABILITY OF FLOQUET MEMs IN THE PRESENCE
OF DISORDER AND THEIR TOPOLOGICAL

CHARACTERIZATION

After investigating the generation and characterization of
the Floquet 0- and π -MEMs, we further explore the stabil-
ity of these modes in the presence of random disorder. We
consider the following on-site time-independent disorder in
Hstep(k, t ) [Eq. (5)] as

Vdis = V (r)�1, (14)

where V (r) is distributed randomly in the range [−w
2 , w

2 ] and
w accounts for the disorder strength. Note that the system con-
tinues to preserve the chiral symmetry in the presence of the
above disorder, i.e., S−1H (r)S = −H (r), where H (r) denotes
the real-space Hamiltonian as k is no longer a good quantum
number. The quasienergy spectra remain qualitatively similar
to Figs. 3(c) and 3(d) and continue to manifest both 0 and
π modes as long as the disorder scale does not close these
corresponding gaps (see text for further discussion).

Due to the absence of quasimomenta k, we cannot com-
pute the dynamical winding number Wε using Eq. (13) for
the disordered system. However, we can impose the twisted
boundary condition (TBC) to define the topological invariant
[82–84] for this case. In the TBC, the two ends of the system
are glued together to form a ring, and a periodic flux θ is
threaded through the ring such that, whenever a particle hops
from one lattice site to another, it acquires a phase [85,86].
This accounts for the following transformations: ψ j,↑(↓) →
eiθ jψ j,θ↑(↓) and ψ

†
j,↑(↓) → e−iθ jψ

†
j,θ↑(↓) such that Lθ = 2π ,

where L is the number of lattice sites. The lattice Hamiltonian
in the presence of on-site disorder and the periodic flux θ can
be written in the following form:

Hstep =
∑

j,θ

�
†
j,θ [−c1 + V (r)]�1 � j,θ , t ∈ [0, T/4),

=
∑

j,θ

�
†
j,θ [{(2t − c0) + V (r)}�1 + Bx�3 + ��4]� j,θ

+�
†
j,θ (−t�1 − iu�2)eiθ� j+1,θ + H.c.,

t ∈ [T/4, 3T/4),

=
∑

j,θ

�
†
j,θ [−c1 + V (r)]�1 � j,θ , t ∈ [3T/4, T ]. (15)

Here � j,θ = {ψ j,θ↑, ψ j,θ↓, ψ
†
j,θ↓,−ψ

†
j,θ↑}t and θ serves the

purpose of the momenta, whereas the unit cell in this su-
perlattice is composed of 4L disordered lattice. Note that
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FIG. 5. In panels (a) and (b), we depict the dynamical winding
numbers W0 and Wπ , respectively, in the presence of small (w = 0.1)
on-site disorder as a function of the driving frequency �. We repeat
panels (a) and (b) in panels (c) and (d) and panels (e) and (f) for mod-
erate (w = 0.5) and strong (w = 0.8) disorder strength, respectively.
Here, green (dashed), red (solid), and blue (dotted-dashed) lines rep-
resent the winding number (W c

ε ) for the corresponding clean system,
the disorder-averaged winding number (W d

ε ) for the disordered sys-
tem, and the variance (σ 2) of the winding number of the disordered
system from the mean value W d

ε , respectively, for quasienergy ε. We
choose c0 = 0.2, while all the other model parameter values remain
the same as those mentioned in Fig. 3.

our analysis is independent of the choice of the gauge to
represent the twist variable θ . The chiral symmetry operator
in the real space can be written as SL = S ⊗ IL. The 4L×4L
chiral basis can be obtained by diagonalizing SL, and using the
chiral basis along with the relations (7)–(12), we can evaluate
U ±

ε (θ ). However, U ±
ε (θ ) are now 2L×2L matrices. Incorpo-

rating these, we can define the dynamical winding number W d
ε

for the disordered system as [82–84]

W d
ε =

∣∣∣∣ ± i

2π

∫ π

−π

dθ Tr
[{

U ±
ε (θ )

}−1
∂θU ±

ε (θ )
]∣∣∣∣. (16)

We exhibit the disorder-averaged winding number W d
ε , its

variance σ 2 from the mean value, and the winding number
of the clean system W c

ε (for comparison) as a function of the
driving frequency � in Fig. 5. We have considered a system
consisting of L = 30 sites and performed an average over 100
disorder configurations. We consider three sets of the disorder
strength: small (w = 0.1), moderate (w = 0.5), and strong
(w = 0.8), and we discuss their outcome below.

Case I—Small disorder (w = 0.1). We show W0 and Wπ

in Figs. 5(a) and 5(b), respectively. The disorder-averaged
winding number W d

ε matches well with that of the clean case

W c
ε except near smaller � values. The variance σ 2 remains

almost near 0 and also manifests the stability of W d
ε . However,

the finite variance indicates the fluctuations in the quantization
in low-frequency regime. This discrepancy can be attributed to
the smaller bulk gaps near 0 and π quasienergy.

Case II—Moderate disorder (w = 0.5). We show W0 and
Wπ in Figs. 5(c) and 5(d), respectively. However, W d

ε matches
with that of the clean case W c

ε only near higher values
of � (high-frequency limit). The variance σ 2 also exhibits
large fluctuations near smaller frequencies and tends to 0
near higher frequencies. Thus, MEMs survive for a relatively
higher frequency regime even in the presence of moderate
disorder strength. More interestingly, the Majorana π modes
appear to be more robust against disorder (near � ∼ 0.5) as
compared to the Majorana 0 modes as the former deviates
less from the quantized value (the variance σ 2 ∼ 0) of the
corresponding winding number [see Figs. 5(c) and 5(d)]. This
can be attributed to the fact that disorder usually affects the
Floquet Majorana modes when its energy scale is greater or
equivalent to the topological gap. For moderate disorder, the
corresponding scale may not be comparable to the π gap while
it can be commensurate to close the 0 gap in the observed
frequency limit. Hence, π modes appear to be more robust
against disorder as compared to the Majorana 0 modes.

Case III—Strong disorder (w = 0.8). We show W0 and
Wπ in Figs. 5(e) and 5(f), respectively. There is almost no
matching between W d

ε and W c
ε . The variance σ 2 is nonzero

throughout the frequency range. Both the 0- and π -MEMs
disappear for strong disorder strength.

V. GENERATION OF FLOQUET MEMs USING PERIODIC
KICK DRIVE PROTOCOL

After extensive discussions on the generation and charac-
terization of Floquet Majorana modes using the periodic step
drive protocol, here we introduce the periodic kick protocol
to generate the Floquet 0- and π -MEMs in our setup. We
consider H0(k) in between successive kicks, and the on-site
kick in the chemical potential is given as

c(t ) = −c1�1

r=∞∑
r=0

δ(t − rT ). (17)

The Floquet operator in terms of the time-ordered notation can
be written as

Ukick (k, T ) = TO exp

[
− i

∫ T

0
dt {H0(k) + c(t )}

]

= e−iH0(k)T eic1�1 . (18)

Having constructed the Floquet operator, we study the bulk
quasienergy spectra of the system. We depict E (k) as a
function of k in Figs. 6(a) and 6(b) for driving frequencies
� = 3.0 and � = 5.0, respectively. From insets I1 and I2
of Fig. 6(a), one can notice two bulk gap openings at the 0
and π gaps, indicating two end modes at these gaps. On the
other hand, from the inset of Fig. 6(b), four gap-openings
appear near quasienergy π , indicating the presence of four
MEMs. Nevertheless, we contemplate the OBC to substantiate
our predictions, obtained from the bulk spectra. We show
the quasienergy spectra with respect to the state index m in
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FIG. 6. Panels (a) and (b) represent the bulk quasienergy spectra
for the periodic kick drive protocol [Eq. (17)] for � = 3.0 and
� = 5.0, respectively. The insets I1 and I2 of panel (a) [inset of
panel (b)] exhibit(s) the bulk gap around quasienergies E (k) = π and
E (k) = 0, respectively [quasienergy E (k) = π ]. In panels (c) and
(d), we illustrate the quasienergy spectra Em as a function of the
state index m while system obeys the OBC, corresponding to panels
(a) and (b), respectively. In the insets of these panels, we depict
the zoomed-in quasienergies for better clarity. Here, we consider
N = 4000 lattice sites. All the other model parameters are chosen
as (c0, c1, �, Bx, t, u) = (1.0, 0.2, 1.0, 1.0, 1.0, 0.5).

Figs. 6(c) and 6(d) for � = 3.0 and � = 5.0, respectively.
We depict the 0- and π -mode eigenvalues in insets I1 and
I2 of Fig. 6(c), respectively, whereas the inset of Fig. 6(d)
indicates only four π -MEMs, with no 0-MEM being present
in this case.

To topologically characterize the Floquet 0- and π -MEMs,
we calculate the dynamical winding number Wε defined in
Eq. (13). We illustrate W0 and Wπ in the c0 − � plane in
Figs. 7(a) and 7(b), respectively. Similar to the step drive,

FIG. 7. We demonstrate the dynamical winding numbers W0 and
Wπ in the c0 − � plane in panels (a) and (b), respectively, for
periodic-kick drive protocol. All the model parameter values remain
the same as those mentioned in Fig. 6.

here also one can generate multiple MEMs. However, this is
only possible for the π modes (on this parameter range), and
the number of multiple modes generated is less than that in
the case of step drive. This can be attributed to the fact that
the periodic kick is less efficient to generate longer-range
hopping in the dynamical system for this parameter regime,
compared to the periodic step drive protocol. Another point of
concern with the dynamical winding number for the periodic
kick is that it matches correctly with the OBC quasienergy
spectra only when � � 3.0. Using the similar line of argu-
ments invoked for the step drive protocol, we can argue on the
Majorana nature of the 0 and π end modes for this case too.

VI. POSSIBLE EXPERIMENTAL CONNECTION

Having discussed the theoretical proposal in engineering
the Floquet Majorana modes and examining their robustness
under disorder, we here demonstrate the possible experimental
connection and its realization. The possible candidate material
can be the popular InSb/InAs 1D NW with strong SOC and
proximity-induced s-wave superconductivity (e.g., Nb/Al) in
it [24–33,87]. The time-dependent gate voltage has been
theoretically investigated in the context of transport studies
[88,89] and can be implemented experimentally [90,91] by
adopting a suitable superposition of several harmonics. Note
that the first 0 < t < T/4 and the last 3T/4 < t < T parts of
the driving scheme include an atomic insulator type model
Hamiltonian H1. This can be engineered out of the NW by
changing the gate voltage and other control parameters to
such a position where bands are relatively flat and substan-
tially gapped. In the intermediate time T/4 < t < 3T/4, the
chemical potential can be tuned such that band dispersion in
the NW becomes relevant. Experimental implementation of
sudden quench between such step Hamiltonians, as demon-
strated in Eq. (5), might be challenging. As a result, there
exists a switching time, quantified by the time gap between
two subsequent Hamiltonians, that plays a crucial role in the
practical realization. This switching timescale τ has to be
typically smaller than that of the timescale associated with
the Majorana localization length λ and the velocity v of the
quasiparticles (Fermi velocity in most of the cases) produced
by such quench, i.e., τ < λ/v. This condition ensures that
the MEMs will not diffuse into the bulk during the switching
time. The system size L (length of the nanowire) possesses
another length scale referring to the fact that τ � L/v as
λ/v < L/v to avoid overlap of Majoranas inside the NW.
Note that, once the switching time is greater than the char-
acteristic timescale of the system, the adiabatic evolution will
obstruct Majoranas to appear as we have started from a trivial
phase. The characteristic timescale is set by the inverse of
the gap difference 1/δE = |�E0 − �E1|−1 = f (�, Bx, c0, c1)
associated with the two subsequent step Hamiltonians H0 and
H1. This condition ensures nonadiabatic evolution in order
to conceive the Floquet MEMs. Therefore, we believe that
the switching timescale τ < min{δ−1

E , λ/v} < L/v in order to
observe Floquet topological Majorana modes.

As far as the experimental signature is concerned, imple-
mentation of our dynamical protocol might able to signal the
topological nature of Floquet MEMs even in the presence
of disorder. Interestingly, the quantization of the dynamical
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winding number remains robust for small strength of disor-
der. Moreover, for intermediate disorder strength, it decreases
from the quantized value by a small amount which might be
possible to probe experimentally (see Fig. 5). The π -MEMs
are found to be more robust with disorder in terms of the quan-
tization of the dynamical winding number. Such an anomalous
mode can only be present in the Floquet topological su-
perconducting phase without any static analog. The driving
frequency should be kept at an intermediate value with respect
to the other band parameters of the model, such as the hopping
and the SOC such that the Floquet topological superconduct-
ing phases can host multiple numbers of MEMs within an
experimentally conceivable window of the drive parameters
(see Fig. 4). For InSb nanowire, the Rashba spin-orbit strength
is around 50 µeV [25]. Following this, our model parameters
can take the values u ∼ 25 µeV, t ∼ 50 µeV, and � ∼ 50 µeV.
Thus, the corresponding range of frequency can lie within
� ∼ 27–76 GHz to realize the Floquet MEMs.

VII. SUMMARY AND CONCLUSIONS

To summarize, in this article, we consider a practically
realizable model to generate multiple Floquet MEMs based
on 1D Rashba NW with proximity-induced s-wave supercon-
ductivity, while an external magnetic field is applied along
the x direction. To begin with, we study the topological phase
diagram of this static TSC using a winding number exploiting
the chiral symmetry. This matches with earlier predictions
[3,4,17]. In this model, a periodic three-step drive protocol is
employed to generate the FTSC phase hosting both regular 0-
MEMs and anomalous π -MEMs. Within our driving scheme,
multiple MEMs (both regular 0 modes and anomalous π

modes) can be generated. We utilize the periodized evolution
operator to contrive the dynamical topological winding num-
ber, which can distinctly characterize both 0- and π -MEMs.
The robustness of the MEMs is investigated in the presence
of the on-site disorder potential. Nonetheless, the MEMs are
almost insensitive to small disorder and remain localized at
the ends of the chain only for a specific frequency regime in
the case of moderate disorder. However, these modes in the
FTSC phase is destroyed for the strong disorder regime. In the
presence of disorder, the dynamical winding number is com-
puted employing the TBC. Given the fact that the topological
MEMs are characterized by Pfaffian-based Z and Z2 invariant
[19,92–95], here we consider the real-space-based dynami-
cal invariant to characterize the Floquet Majorana modes in
the presence of disorder. We further generalize our scheme

of Floquet generation of MEMs for the periodic-kick drive
protocol.

We have investigated both the 0- and π -MEM wave func-
tions corresponding to Fig. 3(c) (step drive) and Fig. 6(c)
(periodic kick). We establish the equality condition of the
particle and hole parts of the wave function at a single site.
Note that we can examine the wave function only when one
MEM wave function, localized at one end of the chain, is
separated from the other MEM state that resides at the other
end of the chain. Nevertheless, extracting such wave functions
by linear superpositions or unitary transformations is not quite
straightforward for the case of multiple MEMs, i.e., more
than two. The generation of multiple MEMs for a driven
system is not unique to first-order TSCs [53,66,96,97] only,
but also is visible for higher-order TSCs [98–100]. On the
other hand, static p-wave 1D chain with long-range hopping
involving the nth nearest neighbor can host 2n number of
degenerate MEMs [101]. Moreover, multiple MEMs are pre-
dicted in non-Hermitian systems [102]. We can comment that
multiple Floquet MEMs can become instrumental for braiding
in the time domain which is hard to design for static systems
[67–70].

The Floquet generation of MEMs following the experimen-
tally realizable NW model has also been investigated in some
earlier studies [56,61]. In Ref. [56], the authors considered
a cold-atomic system consisting of a 1D NW s-wave super-
conductor heterostructure in the presence of an external laser
irradiation to generate Floquet MEMs (both 0 and π modes),
whereas Ref. [61] reported the emergence of Floquet MEMs
in the Rashba NW model with proximity-induced s-wave su-
perconductivity. The system is made time-dependent via an
external ac gate voltage which produces sinusoidally periodic
chemical potential. The dissipation and the corresponding
lifetime of the Floquet MEMs in the presence of strong en-
ergy and density fluctuations, created by the superconducting
proximity effect, have also been investigated. However, in
the above studies, the generation of multiple Floquet MEMs
and their topological protection in the presence of random
disorder have not been explored. The transport and shot-noise
signatures of the π modes in Rashba NW setup can also be
interesting future directions as well.
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